
© Copyright Khronos Group 2015 - Page 1 

More on Vulkan and SPIR-V: 
The future of high-performance graphics 

 



© Copyright Khronos Group 2015 - Page 2 

Outline 
• Welcome  
-  Neil Trevett, Khronos President (NVIDIA) 

• Vulkan project overview 
-  Tom Olson, GL Next committee chair (ARM) 

• Vulkan applications 
-  Graham Sellers, Vulkan specification co-editor (AMD) 

• SPIR-V provisional specification 
-  John Kessenich, SPIR-V specification editor (LunarG) 

• Member progress reports and demos 
-  Various members 

• Next steps 
-  Tom again 

• Q&A / Panel discussion 



© Copyright Khronos Group 2015 - Page 3 

Khronos Connects Software to Silicon 

Open Consortium creating  
ROYALTY-FREE, OPEN STANDARD 
APIs for hardware acceleration 

 
 

Defining the roadmap for  
low-level silicon interfaces 
needed on every platform 

 

Graphics, compute, rich media, 
vision, sensor and camera 

processing 

 

Rigorous specifications AND 
conformance tests for cross-

vendor portability 
 

Acceleration APIs  
BY the Industry  

FOR the Industry 

Well over a BILLION people use Khronos APIs 
Every Day… 



© Copyright Khronos Group 2015 - Page 4 

Khronos News at GDC 

• Vulkan – next generation graphics API 
-  Low overhead, high-efficiency graphics and compute on GPUs 
-  Formerly discussed as Next Generation OpenGL Initiative 
-  Technical overview and demos today – spec later this year 

• SPIR-V – new shader IR supporting both graphics and compute constructs 
-  Adopted by both Vulkan and OpenCL 2.1 
-  Provisional specification available today 



© Copyright Khronos Group 2015 - Page 5 

Vulkan Project Overview 
Tom Olson, ARM 
GDC, March 2015 



© Copyright Khronos Group 2015 - Page 6 

Vulkan project history / status 
• June to August 2014 
-  Next Generation OpenGL project launch 
-  Unprecedented commitment from all sectors of the industry 
-  Project disclosure and call for participation at SIGGRAPH 

• Since then… 
-  Intense focus and a lot of hard work 
-  Vulkan unveil at GDC 2015 

• Status 
-  Broad agreement on basic shape and semantics of the API 
-  ‘alpha’ header file enabling experiments 
-  API spec drafting is under way 
-  SPIR-V spec drafting basically complete – provisional spec available 



© Copyright Khronos Group 2015 - Page 7 

Vulkan vision and goals 

• An open-standard, cross-platform 3D+compute API for the modern era 
-  Compatibility break with OpenGL 
-  Start from first principles 

• Goals 
-  Clean, modern architecture 
-  Multi-thread / multicore-friendly 
-  Greatly reduced CPU overhead 
-  Architecture-neutral – full support for tile-based as well as direct renderers 
-  Predictable performance through explicit control 
-  Improved reliability and consistency between implementations 



© Copyright Khronos Group 2015 - Page 8 

Vulkan in a nutshell 
• Modern architecture 
-  GL Context replaced by separate command buffers and dispatch queues 

• Thread-friendly 
-  Most object types are free-threaded 
-  Application is responsible for synchronization 

• Low CPU overhead 
-  Error checking and dependency tracking are the application’s job 
-  Can opt in to a validation layer 

• Explicit control of when work is done 
-  Shader compilation and command generation happen at predictable times 
-  Immutable state specified early to move driver work away from dispatch time 



© Copyright Khronos Group 2015 - Page 9 

• Huge thanks to the whole Vulkan team! 
-  New members are always welcome 

Apple 

But first… 



THANKS 
AMD!



© Copyright Khronos Group 2015 - Page 11 

Vulkan Applications 
Graham Sellers, AMD 

GDC, March 2015 



© Copyright Khronos Group 2015 - Page 12 

Hi! I’m Graham Sellers 
• AMD’s OpenGL and Vulkan architect 
• Represent AMD at OpenGL ARB 
• Contributor of many OpenGL features and extensions 
• Author of OpenGL SuperBible 
• Spent the last year or so working on Vulkan 

•  I’m going to whip through a complete Vulkan application from startup to tear down 

This is pseudo-code, not final API 
We are still finalizing some details 

 

@grahamsellers 

https://www.khronos.org/vulkan 



© Copyright Khronos Group 2015 - Page 13 

Vulkan Application Startup 
• Vulkan is represented by an “instance” 
• Application can have multiple Vulkan instances 
-  Each is independent 
-  Eases middleware, subsystems, etc. 

•  Instance is owned by the loader 
-  Aggregates drivers from multiple vendors 
-  Responsible for discovery of GPUs 
-  Makes multiple drivers look like one big driver supporting many GPUs 

VK_APPLICATION_INFO appInfo = { ... }; 
VK_ALLOC_CALLBACKS allocCb = { ... }; 
VK_INSTANCE instance; 
 
vkCreateInstance(&appInfo, &allocCb, &instance); 



© Copyright Khronos Group 2015 - Page 14 

Vulkan GPUs 
• Vulkan instance creation takes: 
-  Application info – tell Vulkan about your application 
-  Allocation callbacks – Vulkan will allocate system memory using your allocator 

• Once you have an instance, ask it about GPUs 

• Produces a list of GPUs, and a count 
• GPUs can be from different vendors 
-  Integrated + discrete 
-  Multiple discrete GPUs in one system 
-  Cross-GPU resource sharing and explicit multi-GPU support is in API 

uint32_t gpuCount; 
VK_PHYSICAL_GPU gpus[10]; 
 
vkEnumerateGpus(instance, ARRAYSIZE(gpus), &gpuCount, gpus); 



© Copyright Khronos Group 2015 - Page 15 

Vulkan GPU Info 
• Query information about a GPU 

• Lots of information available about GPU 
-  Manufacturer, relative performance, memory sizes, queue types, etc. 

• Cross-GPU compatibility query 

• Compatibility info indicates 
-  Full sharing, sharing of specific resources, or no compatibility at all 

VK_SOME_GPU_INFO_STRUCTURE info; 
uint32_t infoSize = sizeof(info); 
 
vkGetGpuInfo(gpu[0], VK_GPU_INFO_WHATEVER, &infoSize, &info); 

VK_GPU_COMPATIBILITY_INFO compatInfo; 
 
vkGetMultiGpuCompatibility(gpuA, gpuB, &compatInfo); 



© Copyright Khronos Group 2015 - Page 16 

Vulkan Devices 
• Construct a device instance from a GPU 

• Creation info contains information about: 
-  Number and type of queues required 
-  Which extensions you want to use 

-  Extensions are ‘opt-in’ – cannot accidentally use an extension 
-  Level of validation 

-  Drivers generally will not include much, if any, error checking 
-  Layers above can validate at various levels 
-  Drivers may include multiple layers to validate vendor-specific behavior 

VK_DEVICE_CREATE_INFO info = { ... }; 
VK_DEVICE device; 
 
vkCreateDevice(gpu, &info, &device); 



© Copyright Khronos Group 2015 - Page 17 

Vulkan Queues 
• Get queue handles from the device 

 
• Queues are represented using two indices 
-  Node ordinal 

-  Node ordinal represents a “family” of queues, which are directly compatible 
-  Queue index 

-  Each queue family can have many queue instances 

• Queues encapsulate 
-  Functionality – graphics, compute, DMA 
-  Scheduling – independently scheduled, asynchronous 

VK_QUEUE queue; 
 
vkGetDeviceQueue(device, 0, 0, &queue); 



© Copyright Khronos Group 2015 - Page 18 

Vulkan Command Buffers 
• GPU commands are batched in command buffers 

• Create as many command buffers as you need 
• Command buffer creation info includes 
-  Which queue family you want to submit commands to (node ordinal) 
-  Information about how aggressively drivers should optimize for GPU performance 
-  etc. 

VK_CMD_BUFFER_CREATE_INFO info; 
VK_CMD_BUFFER cmdBuffer; 
 
vkCreateCommandBuffer(device, &info, &cmdBuffer); 



© Copyright Khronos Group 2015 - Page 19 

Vulkan Commands 
• Commands are inserted into command buffers 

• Driver heavy lifting happens here 
-  Build many command buffers from many threads 
-  Re-use command buffers 
-  Spend time here optimizing work, not last minute right before draw 
-  Big packages of immutable state make the workload less regardless 

VK_CMD_BUFFER_BEGIN_INFO info = { ... }; 
vkBeginCommandBuffer(cmdBuf, &info); 
 
vkCmdDoThisThing(cmdBuf, ...); 
vkCmdDoSomeOtherThing(cmdBuf, ...); 
 
vkEndCommandBuffer(cmdBuf); 



© Copyright Khronos Group 2015 - Page 20 

Vulkan Shaders 
• Vulkan shaders are compiled up-front 

• Shader creation info contains 
-  Pointer to shader source 

-  SPIR-V – portable, vendor-neutral, open, extensible shader binary 
-  Other IRs could be supported through the same interfaces 

-  Additional optional information 

• Compile shaders from multiple threads 
-  Driver will do as much work as it can right here 

VK_SHADER_CREATE_INFO info = { ... }; 
VK_SHADER shader; 
 
vkCreateShader(device, &info, &shader); 



© Copyright Khronos Group 2015 - Page 21 

Vulkan Pipeline State 
• Pipeline state is fully compiled 

• Creation info contains 
-  Compiled shaders 
-  Blend, depth, culling, stencil state, etc. 
-  List of states that need to be mutable 

• Pipelines can be serialized and deserialized 

VK_GRAPHICS_PIPELINE_CREATE_INFO info = { ... }; 
VK_PIPELINE pipeline; 
 
vkCreateGraphicsPipeline(device, &info, &pipeline); 

uint32_t dataSize = DATA_SIZE; 
void* data = malloc(DATA_SIZE); 
 
vkStorePipeline(pipeline, &dataSize, data); 
... 
vkLoadPipeline(device, dataSize, data, &pipeline) 



© Copyright Khronos Group 2015 - Page 22 

Vulkan Mutable State 
• Some pipeline state is mutable or dynamic 
• Represented by smaller state objects 

VK_DYNAMIC_VP_STATE_CREATE_INFO vpInfo = { ... }; 
VK_DYNAMIC_VP_STATE_OBJECT vpState; 
 
vkCreateDynamicViewportState(device, &vpInfo, &vpState); 
 
VK_DYNAMIC_DS_STATE_CREATE_INFO dsInfo = { ... }; 
VK_DYNAMIC_DS_STATE dsState; 
 
vkCreateDynamicDepthStencilState(device, &dsInfo, &dsState); 



© Copyright Khronos Group 2015 - Page 23 

Vulkan Resources 
• Resources have a CPU and a GPU component 
• CPU side is allocated using a vkCreate* function: 

•  It is the application’s responsibility to allocate GPU memory for resources… 

VK_IMAGE_CREATE_INFO imageInfo = { ... }; 
VK_IMAGE image; 
vkCreateImage(device, &imageInfo, &image); 
 
VK_BUFFER_CREATE_INFO bufferInfo = { ... }; 
VK_BUFFER buffer; 
vkCreateBuffer(device, &bufferInfo, &buffer); 



© Copyright Khronos Group 2015 - Page 24 

Vulkan GPU Memory 
• Query objects for their memory requirements 

• Application allocates GPU memory 

• Bind application-owned GPU memory to objects 

VK_IMAGE_MEMORY_REQUIREMENTS reqs; 
size_t reqsSize = sizeof(reqs); 
 
vkGetObjectInfo(image, 
                VK_INFO_TYPE_IMAGE_MEMORY_REQUIREMENTS, 
                &reqsSize, &reqs); 

VK_MEMORY_ALLOC_INFO memInfo = { ... }; 
VK_GPU_MEMORY mem; 
vkAllocMemory(device, &memInfo, &mem); 

vkBindObjectMemory(image, 0, mem, 0); 



© Copyright Khronos Group 2015 - Page 25 

Vulkan Descriptors 
• Vulkan resources are represented by descriptors 
• Descriptors are arranged in sets 

• Sets are allocated from pools 

• Each set has a layout, which is known at pipeline creation time 
-  Layout is shared between sets and pipelines and must match 
-  Layout represented by object, passed at pipeline create time 

• Can switch pipelines which use sets of the same layout 
• Many sets of various layouts are supported in one pipeline in a chain 

vkCreateDescriptorPool(...); 
vkCreateDescriptorSetLayoutChain(...); 
vkCreateDescriptorSetLayout(...); 
vkAllocDescriptorSets(...); 



© Copyright Khronos Group 2015 - Page 26 

Vulkan Render Passes 
• Render passes represent logical phases of a frame 
• Render passes are explicit objects 

• Render pass contains a lot of information about rendering 
-  Layout and types of framebuffer attachments 
-  What to do when the render pass begins and ends 
-  The region of the framebuffer that the render pass may effect 

• Vitally important information for tile-based and deferred renderers 
-  … but also very helpful for traditional forward-renderers! 

VK_RENDER_PASS_CREATE_INFO info = { ... }; 
VK_RENDER_PASS renderPass; 
 
vkCreateRenderPass(device, &info, &renderPass); 



© Copyright Khronos Group 2015 - Page 27 

Vulkan Drawing 
• Draws are placed inside render passes 
• Executed in the context of a command buffer 

• Pipelines, dynamic state objects and other resources bound to command buffers 
• All draw types supported 
-  Indexed and non-indexed, direct and (multi-)indirect, compute dispatches, etc. 

VK_RENDER_PASS_BEGIN beginInfo = { renderPass, ... }; 
 
vkCmdBeginRenderPass(cmdBuffer, &beginInfo); 
 
vkCmdBindPipeline(cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline); 
vkCmdBindDescriptorSets(cmdBuffer, ...); 
vkCmdDraw(cmdBuffer, 0, 100, 1, 0); 
 
vkCmdEndRenderPass(cmdBuffer, renderPass); 



© Copyright Khronos Group 2015 - Page 28 

Vulkan Synchronization 
• Work is synchronized using event primitives 

• Events can be set, reset, queried and waited on 

• Command buffers can signal events as they complete execution 

VK_EVENT_CREATE_INFO info = { ... }; 
VK_EVENT event; 
 
vkCreateEvent(device, &info, &event); 

vkSetEvent(...); 
vkResetEvent(...); 
vkGetEventStatus(...); 
vkCmdSetEvent(...); 
vkCmdResetEvent(...); 
vkCmdWaitEvents(...); 



© Copyright Khronos Group 2015 - Page 29 

Vulkan Resource State 
• Operations in command buffers are demarked by pipeline barriers 
• Barriers can wait on and signal events 
• Barriers can transition resources from state to state 
-  Renderable 
-  Readable as texture 
-  etc. 

 
• Drivers do not track state 
-  Applications are responsible for state tracking 
-  If you get it wrong, we will happily render garbage or crash 
-  Validation layer will track state (slowly) and scream at you when you screw up 

VK_IMAGE_MEMORY_BARRIER imageBarrier = { ... }; 
VK_PIPELINE_BARRIER barrier = { ..., 1, &imageBarrier }; 
 
vkCmdPipelineBarrier(cmdBuffer, &barrier); 



© Copyright Khronos Group 2015 - Page 30 

Vulkan Work Enqueue 
• Work is executed on queues belonging to devices 
• Completed command buffers are sent to queues for execution 

  
 
• Queues own memory residency 
-  Driver will not track memory residency for you 

 

• Queues can also signal and wait on semaphores for object ownership 

VK_CMD_BUFFER commandBuffers[] = { cmdBuffer, ... }; 
vkQueueSubmit(queue, 1, commandBuffers, fence); 

vkQueueAddMemReference(queue, mem); 
vkQueueRemoveMemReference(queue, mem); 

vkQueueSignalSemaphore(queue, semaphore); 
vkQueueWaitSemaphore(queue, semaphore); 



© Copyright Khronos Group 2015 - Page 31 

Vulkan Presentation 
• Presentation is how we get images to the screen 
• Displayable resource represented by a special kind of image 
-  Bindable to framebuffers 
-  Created by platform-specific modules called WSI (Window System Interface) 

• Defining a small number (~2?) of WSI bindings 
-  One for compositing systems where the compositor owns the displayable surface 
-  One for systems that allow presentation of application-owned surfaces 

• WSI also deals with things like: 
-  Enumerating display devices and video modes 
-  Going full screen 
-  Controlling vsync 

• Presentations enqueued along with command buffers 



© Copyright Khronos Group 2015 - Page 32 

Vulkan Teardown 
• Application responsible for object destruction 
-  Must be correctly ordered 
-  No reference counting 
-  No implicit object lifetime 

• Do not delete objects that are still in use! 
• Most objects destroyed with: 

• Some objects are “special”: 

vkDestroyObject(object); 

vkDestroyDevice(device); 
vkDestroyInstance(instance); 



© Copyright Khronos Group 2015 - Page 33 

Vulkan AZDO? 
• Vulkan is already PDCTZO (Pretty Darn Close to Zero Overhead)! 
-  Very little validation unless you opt-in 
-  You manage everything – virtually no driver funky business 
-  Much better abstraction of the hardware – no complex mapping of API to silicon 

• Submit the same command buffer many times 
-  Amortized cost of building command buffer literally approaches zero 

• Bindless 
-  Debatable need – descriptor sets can be of arbitrary size 
-  Explicit memory residency already in API 

• Sparse 
-  Yes 

• MultiDrawIndirect 
-  Yes 

• Shader Draw Parameters 
-  Yes 



© Copyright Khronos Group 2015 - Page 34 

Vulkan Summary 
• Vulkan is not “low level” – just a better abstraction of modern hardware 
• Vulkan is very low overhead 
-  Reduced CPU utilization means more cycles for your application 
-  Explicit threading support means you can go wide without worrying about graphics APIs 
-  Building command buffers once and submitting many times means low amortized cost 

• Cross-platform, cross-vendor 
-  Not tied to single OS (or OS version) 
-  Not tied to single GPU family or vendor 
-  Not tied to single architecture 

-  Desktop + mobile, forward and deferred, tilers all first class citizens 

• Open, extensible 
-  Khronos is an open standards body 

-  Collaboration from a wide cross-section of industry, IHVs + ISVs, games, CAD, AAA + casual 
-  Full support for extensions, layering, debuggers, tools 
-  SPIR-V fully documented – write your own compiler! 



© Copyright Khronos Group 2015 - Page 35 

Thanks! 

@grahamsellers 

https://www.khronos.org/vulkan 



© Copyright Khronos Group 2015 - Page 36 

SPIR-V Provisional 
GDC, San Jose 
March 2015 



© Copyright Khronos Group 2015 - Page 37 

  Standard  
  Portable 
  Intermediate 
  Representation 

Enables compiler ecosystem for  
more portable shaders 

Goal:   
1)   Portable binary representation of shaders and compute kernels 

for GPUs and parallel computers 
2)   Target for OpenCL C/C++, GLSL, and other shader languages 



© Copyright Khronos Group 2015 - Page 38 

Why use SPIR? 
Without SPIR: 
• Vendors shipping source 
-  Risk IP leakage 

• Limited Portability 
-  No ISV control over front end 
-  Different front end semantics per vendor  

• Higher runtime compilation time 

With SPIR: 
• Ship a single binary 
-  Requires tools to decipher; protecting IP 

•  Improved Portability 
-  ISV can create their own front end tool chain 
-  Multiple ISVs can share a common front end 

• Reduced runtime compilation time 
-  Some steps are offloaded 

Opportunity to unleash innovation:  
Domain Specific Languages, C++ Compilers, …. 



© Copyright Khronos Group 2015 - Page 39 

What is SPIR-V? 
• New intermediate language for input to Khronos graphics and compute APIs 
-  Fully specified Khronos-defined standard 
-  Can natively represent Khronos graphics and compute idioms 
-  E.g., implicit derivatives with control-flow constraints 

-  Memory and execution models for all GLSL and OpenCL high-level languages 

• Core for Vulkan  
-  The only language accepted by the API 
-  Exposes machine model for Vulkan 
-  Fully supports the GLSL/ESSL shader languages 
-  Other shading languages easily target SPIR-V 

• Core for OpenCL 2.1 
-  Supports OpenCL 1.2, 2.0, 2.1 kernel languages 



© Copyright Khronos Group 2015 - Page 40 

SPIR-V shader-language support 
• Compiler chain split in two 
-  Front end compiler emits SPIR-V portable binary IL, offline 
-  SPIR-V IL is compiled to machine-specific binary by driver, online 
 

• Front end NOT required in driver 
-  Khronos working on offline language front ends 



© Copyright Khronos Group 2015 - Page 41 

SPIR-V: A Deeper Look 
• A Binary Intermediate Language 
-  A linear stream of words (32-bits) 

• Functions inside a module contain a CFG (control-flow graph) of basic blocks 
• Load/Store instructions are used to access declared variables 
• Intermediate results are represented using single static-assignment (SSA) 
• Data objects are represented logically, with hierarchical type information 
-  e.g. No flattening of aggregates or assignment to physical registers 

• Selectable addressing model  
-  Allow usage of pointers, or dictate a memory model which is purely logical 

• Can be easily extended 

• Support debug information that can be safely stripped without changing the 
semantics of SPIR-V modules. 



© Copyright Khronos Group 2015 - Page 42 

SPIR-V is a Binary Form 
• Stream of words 
• 32-bits wide 
• Not a file format 
-  This is the form passed through entry point 
-  But, works well to start file with the  

magic number and directly store the stream 
-  Deduce endianness from magic number 



© Copyright Khronos Group 2015 - Page 43 

SPIR-V is a Common Intermediate Form 



© Copyright Khronos Group 2015 - Page 44 

Structured Control Flow 
11: Label 
    ... 
    LoopMerge 12 NoControl 
    BranchConditional 18 19 12 
19:   Label 
22:   ... 
      SelectionMerge 24 NoControl 
      BranchConditional 22 23 28 
23:     Label 
        ... 
        Branch 24 
28:     Label 
        ...  
        Branch 24 
  
24:   Label 
      ... 
 
 
      Branch 11  
 
 
12: Label 

for (...) { 
 
 
 
    if (...) 
 
 
        ... 
    else 
 
        ... 
 
 
 
    ... 
 
 
} 



© Copyright Khronos Group 2015 - Page 45 

Hierarchical Types, Constants, and Objects 

struct { 
    mat3x4; 
    vec4[6]; 
    int; 
}; 

10: OpTypeFloat 32 
11: OpTypeVector 10 4 
12: OpTypeMatrix 11 3 
13: OpTypeArray 11 6 
14: OpTypeInt 32 1 
15: OpTypeStruct 12 13 14 



© Copyright Khronos Group 2015 - Page 46 

SPIR-V: A Deeper Look (Summary) 
• A Binary Intermediate Language 
-  A linear stream of words (32-bits) 

• Functions inside a module contain a CFG (control-flow graph) of basic blocks 
• Load/Store instructions are used to access declared variables 
• Intermediate results are represented using single static-assignment (SSA) 
• Data objects are represented logically, with hierarchical type information 
-  e.g. No flattening of aggregates or assignment to physical registers 

• Selectable addressing model  
-  Allow usage of pointers, or dictate a memory model which is purely logical 

• Can be easily extended 

• Support debug information that can be safely stripped without changing the 
semantics of SPIR-V modules. 



© Copyright Khronos Group 2015 - Page 47 

Call to Action 

• Seeking feedback now on SPIR-V provisional 
-  A Provisional specification, subject to change based on your feedback 
-  Spec available at www.khronos.org/spir  
-  Provide feedback at https://www.khronos.org/spir_feedback_forum 
-  White paper https://www.khronos.org/registry/spir-v/papers/WhitePaper.pdf 

• Innovate on the front end 
-  New languages, abstractions 
-  Target production quality Back ends 

• Innovate on the back end 
-  New target platforms:  Multi core, Vector, VLIW… 
-  Reuse production quality frontends 
-  Other high-level languages and IRs/ILs 

• Innovate on Tooling 
-  Program analysis, optimization 



© Copyright Khronos Group 2015 - Page 48 

Member Progress Reports and Demos 
 



49 
 

meets Mali™ 
 

Jesse Barker 
Software Engineer,  ARM 

 



50 
 

§  Prototype Vulkan driver for ARM® Mali™ Midgard GPU architecture 
§  Intended to verify that Vulkan is a good fit to the architecture 
§  Initial port on Arndale Octa (4+4 ARM Cortex™ A-15/7, Mali T-628 MP6) 

§  Caveats 
§  Partial implementation – critical functions only, and some shortcuts 
§  Built on top of an OpenGL ES / OpenCL HAL, not optimized for Vulkan 

Vulkan investigations at ARM 



51 
 

§  Draw call microbenchmark 
§  1000 meshes, 3 materials 
§  Minimal state change between meshes 
§  Measure CPU cycles in driver 
§  Compare to OpenGL ES  

Experiment 



52 
 

§  For this test case, 79% reduction in CPU cycles spent in driver! 

Results 

0.00 0.20 0.40 0.60 0.80 1.00 1.20 

Vulkan 

OpenGL ES 

Driver Overhead (normalized CPU load) 



© Copyright Khronos Group 2015 - Page 53 

Kishonti Informatics 



© Copyright Khronos Group 2015 - Page 54 

GFXBench 3.1 
• Graphics benchmark for OpenGL ES 3.1 
•  In Google Play store this week! 

• Adds compute shaders and new high-precision low level tests 



© Copyright Khronos Group 2015 - Page 55 

GFXBench 4.0 

• Graphics benchmark to showcase OpenGL ES 3.1 with Android Extension   
Pack (AEP) 

•  Outdoor car chase scene with adaptive tessellation, HDR rendering, 
physically-based materials, compute post effects, dynamic reflections and 
shadows 

•  Also sports geometry shaders and ASTC texture compression 
•  Public release soon 



© Copyright Khronos Group 2015 - Page 56 

GFXBench 5.0 

•  Entirely new engine aimed at benchmarking low-level 
graphics APIs (Vulkan, DX12, Metal) 

•  Concept is a night outdoor scene with aliens 

•  Still in pre-alpha, but shows the most important concepts 
•  Is showcased running Vulkan at Intel's GDC booth 



© Copyright Khronos Group 2015 - Page 57 

Imagination Technologies 
 



© Copyright Khronos Group 2015 - Page 58 

Intel 



© Copyright Khronos Group 2015 - Page 59 

NVIDIA 



© Copyright Khronos Group 2015 - Page 60 

Valve 
 



© Copyright Khronos Group 2015 - Page 61 

GLAVE debugger 

LunarG.com/Vulkan 



© Copyright Khronos Group 2015 - Page 62 

Call to Action 
• Give us feedback on Vulkan and SPIR 
-  Links provided on Khronos forums 
-  https://www.khronos.org/spir_v_feedback_forum 
-  https://www.khronos.org/vulkan/vulkan_feedback_forum 

• Any company or organization is welcome to join Khronos for a voice and a vote 
in any of these standards 
-  www.khronos.org 

• Watch this space! 
-  Initial specs and implementations coming later this year 



© Copyright Khronos Group 2015 - Page 63 

Q&A / Panel Discussion 
 


