
Specification of policy languages for
network routing protocols in the

Bellman-Ford family

Philip J. Taylor

University of Cambridge
Computer Laboratory

King’s College

September 2011

This dissertation is submitted for
the degree of Doctor of Philosophy





Declaration

This dissertation is the result of my own work and includes nothing which is the out-
come of work done in collaboration except where specifically indicated in the text.

This dissertation does not exceed the regulation length of 60 000 words, including ta-
bles and footnotes.
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protocols in the Bellman-Ford family
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Summary

Routing in large networks relies on protocols that find paths satisfying complex policy
constraints. Protocols such as BGP are based on variants of the Bellman-Ford short-
est paths algorithm but have extended far beyond this simple theoretical foundation,
leading to bugs and stability problems as they have grown over time.

Algebraic routing provides a new theoretical framework for policy languages that can
model much of the behaviour of these protocols, while also allowing proofs of cor-
rectness and stability. Metarouting aims to build practical routing protocols based on
the theory of algebraic routing. Policy languages are specified in a carefully-designed
metalanguage, where their algebraic correctness properties can be computed based on
the constructive definition of the metalanguage, and they can also be compiled into
efficient executable code. The challenge is to provide a useful amount of expressivity
while still supporting correctness proofs.

In this dissertation we build and explore some core components of the metarouting
implementation. First we give a detailed definition of the metalanguages used by the
compiler, improving on previous publications. Next we implement a generalised ver-
sion of the Quagga routing software that can be linked with these compiled policy
languages to produce a complete and usable protocol implementation. This provides
both a powerful model for understanding routing, and an implementation that can be
used for rapid experimentation with new policy languages.

There is still a large gap between the complex realities of network routing and the
model of algebraic routing. To reduce this gap and increase the applicability of meta-
routing, we develop extensions to model and to implement support for policy that is
applied separately on export and import interfaces, and for policy expressed as route
maps that can perform arbitrary computations without compromising the safety guar-
antees provided by the algebraic routing theory.
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Chapter 1

Introduction

1.1 Internet routing

Internet routing aims to solve the problem of efficiently transmitting data packets from
any device connected to the network anywhere in the world to any other device. The
current solution has evolved and grown over the past two decades – today it consists of
about 40,000 individually-operated networks linked together in a complex mesh, with
over a third of a million distinct routes to over two billion endpoints, and still growing
with no sign of slowing down [Hus11]. It has to respond continually to changes in
the network as components are added or removed or fail unexpectedly, as well as to
cope with the commercial demands of a growing multi-billion-dollar industry [Del11]
where competitors are required to work together to maintain connectivity throughout
a single global network.

Much of the software and network protocols that are still in use today originated in
the late 1980s and early 1990s. The Border Gateway Protocol (BGP) – the protocol that
joins every individual network (known as an autonomous system or AS) into the global
Internet – published its first version in 1989 [LR89] and its last major version, BGPv4,
in 1994 [RL94], and has been incrementally extended many times since then.

Although this system has scaled remarkably well to modern demands, it has several
fundamental problems. For a start, it is reasonable to expect that if a network imple-
ments a routing protocol and does not violate that protocol’s checkable requirements,
and the network remains stable for a sufficient period of time, then the protocol will
converge to a state that provides good routes through the network. However, it has
been shown that BGP does not have this property: it can suffer from persistent oscil-
lations [VGE00, GW02], or can get stuck in undesirable states [GH05]. Many of these
bugs were not anticipated in the original design of BGP and were discovered only after
debugging problematic behaviour in large deployed networks – in one reported case
an oscillation lasted for five days and made up 95% of the ISP’s BGP traffic [WJA04] –

11



12 1.1. INTERNET ROUTING

by which time it was too late to fix the protocol design without breaking compatibility.
The research into these problems has suggested various network configuration guide-
lines to avoid encountering them, but this is at best an unsatisfactory solution relying
on constant vigilance by network operators and protocol designers; though there has
been some work on static analysis tools to detect a subset of problems in BGP [FB05],
determining global convergence properties of a network configuration is in general an
NP-hard problem [GW99]. The set of stability problems itself is not stable – the typ-
ical process of designing and extending protocols still consists of writing RFCs that
describe behaviour in a router at the mechanistic level of bytes and of algorithm im-
plementations, providing little protection against the introduction of further stability
bugs and making the behaviour very hard to analyse. Bornhauser et al. [BMH11] ex-
plore the causes of routing anomalies in a component of BGP named iBGP, particularly
in widely-used extensions beyond the original specification, and note that “drafts for
new iBGP extensions come along with similar conceptual defects”: there is not yet a
sufficient understanding in the field to stop the continued introduction of new prob-
lems.

Furthermore, today’s implementation of Internet routing provides very limited flexi-
bility. Routers typically implement a small range of routing protocols: BGP as the exter-
nal gateway protocol (EGP) that connects autonomous systems together; and RIP [Mal98],
OSPF [Moy98], IS-IS [iso02] or EIGRP [AGLAB94] as choices for the internal gateway
protocol (IGP) that is used for routing within a single AS. IGPs are typically approxi-
mations of shortest-path routing, automatically finding paths through the network that
optimise latency or resource usage, whereas EGPs must provide policy-based routing
where network administrators can restrict routing decisions based on commercial re-
lationships or other external requirements. As individual networks have grown in
complexity, often by absorbing other networks and often spanning the globe, some
ASes have outgrown the limited selection of IGPs and been forced to press the more
powerful BGP into service as a policy-rich IGP [WMS05, Ch. 3], a use for which it was
not designed and is not ideally suited.

We believe it is valuable to take a step back from the current solution to Internet rout-
ing and examine its foundations from a fresh perspective. Metarouting [GS05] is an
approach that splits the concept and implementation of a routing protocol into two
distinct components: a routing language that is used to encode policy (sometimes re-
ferred to as a policy language), and a routing algorithm that computes paths based on
policies from any routing language. In this model, routing languages are implemented
using the theory of algebraic routing [Sob02, Sob03] to address the problem of protocol
correctness: despite a protocol typically relying on complex distributed asynchronous
computations, the problem of proving that it will converge to a correct solution is re-
duced to the (often much simpler) problem of proving the routing language exhibits
certain algebraic properties, given a prior understanding of the routing algorithm that
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is used. Metarouting builds on this theory by providing a language to constructively
define complex algebras from simple well-understood components, such that the alge-
braic properties necessary for correctness can be automatically inferred. Finally, meta-
routing provides a practical implementation of this language for defining algebraic
routing languages – the metalanguage – allowing users to compile concise language
specifications into running routing-protocol code. This implementation begins to ad-
dress the problem of limited flexibility in routers, by greatly simplifying the process of
creating protocols with distinctive new forms of policy, allowing rapid experimenta-
tion while the algebraic underpinnings guarantee correct protocol operation; a protocol
constructed in this way will have the most serious convergence problems identified
at design time. Even when protocols do not use the metarouting implementation in
practice, an understanding of the metarouting system still provides insight into the
important tradeoffs and decisions in any new routing protocol design.

In this dissertation we develop the metarouting approach to better match the function-
ality and policy-richness provided by current routing protocols, focusing specifically
on policy-based vector routing protocols that are based on the Bellman-Ford algorithm,
such as BGP, RIP and EIGRP. There are many gaps between the foundational algebraic
routing theory and the practical needs of Internet routing. We aim to bridge some of the
most vital of those gaps. Firstly, this bridging demonstrates the applicability of the the-
oretical approach to a wider range of routing problems: it allows algebraic techniques
to be used for analysing more complex protocol behaviours, and allows the theoretical
correctness guarantees to be more directly applicable to implementations. Secondly, it
improves the viability of the metarouting implementation, letting its routing language
specification and compilation process be used for developing increasingly complex
routing protocols.

1.2 Metarouting system overview

Metarouting consists of a large number of interacting components. Some have been
outlined or detailed in earlier published work, though not all, and most have evolved
since earlier publications. Chapters 2 and 3 aim to give a new, consistent detailing of
the parts that are relevant to this dissertation. This section gives an overview of all the
components and their published work, starting with the core and gradually adding the
additional layers that make up the complete picture of metarouting, and discusses the
motivation for including each component into the system.

As the starting point for this system, algebraic routing as developed by Sobrinho [Sob02,
Sob03, Sob05] models a routing protocol as a routing algebra to express all the aspects
of policy, combined with a generalised routing algorithm that performs the necessary
computation steps, to produce a routing protocol whose convergence behaviour can
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be guaranteed by the algebra’s properties. In particular, if the algebra is increasing
(or “monotonic” in Sobrinho’s terminology) then the algorithm will always reach a
stable solution in any network configuration. Importantly, this is an if-and-only-if re-
lationship: if the algebra is not increasing, then there is some network configuration
in which the algorithm will fail to converge. This provides clear and strongly-justified
constraints on policy. The use of algebras as the formalism for policy makes available
a wide range of existing mathematical literature for understanding its properties and
behaviour, including work on generalised pathfinding with algebras known as semi-
rings [Car79, GM84, GM08].

There are some routing algebras that could guarantee convergence in a subset of net-
work topologies and configurations, for example when networks are connected in a
strict hierarchy and not an arbitrary mesh. Internet routing is often viewed as a hier-
archy – Gao and Rexford [GR01] show that the hierarchy produced by common com-
mercial relationships can provide stability in the Internet; Xia and Gao [XG04] infer
these relationships based on observed Internet routing data; the proposed HLP proto-
col [SCE+05] uses an algorithm optimised for this hierarchy. However, there is noth-
ing enforcing this and the number of exceptions grows as the Internet becomes more
complex; it has been observed that the Internet has “migrated from a fairly tree-like
connectivity graph to a meshier style” [DD10] over time. This lack of a strict hier-
archy, together with the NP-hardness of detecting convergence problems in arbitrary
networks [GW99], motivates our desire to provide correctness as a fundamental part
of the routing protocol that is not dependent on having networks follow an unenforce-
able set of rules. We therefore do not include network topologies in our design of the
metarouting system, focusing solely on topology-independent properties.

On the implementation side, protocols today are typically monolithic implementations
of the standard RFCs for BGP and RIP and so on, written in C or C++. These include
open source software such as Quagga [qua] and XORP [HKG+05], and commercial
devices from companies such as Cisco [cis] and Juniper [jun]. Mapping these to any
theoretical model is a difficult task of reverse-engineering, and requires extracting the
semantics from prose and pseudo-code in the RFCs or (where they extend or diverge
from the RFCs) from the implementations themselves. Earlier work introduced for-
malisms such as the Simple Path Vector Protocol [GSW99, GSW02] as greatly simpli-
fied approximations of BGP’s operation, and extracted correctness properties such as
the customer/provider/peer guidelines [GR01] based on analysing the typical usage
of BGP policy.

Figure 1.1 illustrates the relationships between components in this model; we will ex-
tend this diagram to show how new components interact and form the complete sys-
tem. On the right, the algebraic routing theory lets us understand protocols as a combi-
nation of algebra and algorithm. On the left, the implementation is a single component
that conflates these tasks.
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Implementation Algebraic routing theory
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Routing algebra
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Figure 1.1: Overview diagram of the initial approach to algebraic routing.

The reverse engineering provides an important starting point for understanding the
protocols, but is laborious and far from robust given the complexity of the analysis
and the infeasibility of verifying the implementation against the theory.

We want to reduce the gap between implementations and the algebraic theory to make
them easier to relate. The first incremental change we make to this model is to split
the protocol implementation into two clearly separate components, one for the routing
language and one for the algorithm, which are linked to produce the complete protocol,
as in Figure 1.2.

In the current metarouting implementation the routing algorithm implementations are
derived from the open source Quagga routing suite, which provides standard pro-
tocols such as BGP, RIP and OSPF. We have removed the default hard-coded pol-
icy behaviour, allowing arbitrary routing language implementations to be plugged in,
giving a set of generalised algorithm implementations that we call gQuagga. In Chap-
ter 4 we discuss the details of this generalisation process. The new algorithms can be
considered instances of generalised distributed Bellman-Ford and Dijkstra algorithms,
though in practice they retain a strong flavour of the protocol from which they were de-
rived, and so we call the individual generalised algorithms gBGP, gRIP, gOSPF and so
on. Other algorithm implementations – for example based on XORP, or offline network
simulators – could also be used, though for simplicity we will only consider algorithms
with the same API as gQuagga.

Routing language implementations in this case are executable C or C++ code libraries
that can plug into the gQuagga algorithms. In principle these could be arbitrary hand-
written code – the only requirement is that they implement the language–algorithm
API detailed in Chapter 4. We use C++ simply because all practical routing protocol
implementations are written in C or C++ and this minimises the friction of combining
the algorithm and language code. (If we were to use routing algorithms written in
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Language
implementation

Algorithm
implementation

Protocol
implementation

Routing algebra
Routing

algorithm

Routing
protocol

semantics

Linker

Reverse
engineer

Algorithm
analysis

Figure 1.2: Overview diagram with algorithm/language split in implementations.

a very different programming language, the routing languages should likely use that
same programming language, but there would typically be little fundamental differ-
ence from our current choice of C++.)

This algorithm/language split in the implementation makes it slightly easier to map
onto the theoretical model. The routing language code can be examined to determine
what routing algebra it implements (if any), without worrying about the details of how
it is mixed in with the algorithm code. Similarly, we can analyse gBGP and gRIP to de-
termine how closely they implement an idealised distributed Bellman-Ford algorithm,
without depending on the details of the protocol’s policy design.

However, this change still does not provide a straightforward way to relate the routing
language to a routing algebra that can be checked for correctness. It also does not
simplify the task of implementing a routing language – there is likely to be a large
amount of boilerplate code that the algorithm requires (e.g. most of the language’s data
types need code to send and receive over the network, read input from configuration
commands, output to debug logs, handle explicit memory management, etc.), greatly
increasing the cost and the likelihood of bugs when experimenting with new policy
languages.

This separation of language/algorithm implementation is therefore just a stepping
stone towards the next stage. To address the difficulties we raise routing languages
to a higher level of abstraction than C++, by developing a domain-specific language
that we call the executable routing language1 (ERL). Figure 1.3 shows how this fits into
the system.

This new language has an explicit algebraic semantics: any ERL specification can be

1 Since this is a language for describing an executable form of routing languages, we should probably
call it the executable routing metalanguage, but the ERL name has stuck.
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Figure 1.3: Overview diagram with routing languages implemented in ERL.

mechanically mapped onto a routing algebra, eliminating the need to reverse engineer
the behaviour from C++ code. It also eliminates boilerplate code: ERL is a declarative
language from which an ERL-to-C++ compiler can generate all the code required by
the gQuagga API, greatly reducing the effort involved in developing a new routing
language. The language also increases implementation quality compared to manual
coding in C/C++ by eliminating whole classes of potential bugs, for example by auto-
matically handling memory allocation and by reusing a library of robust functions for
parsing complex data types from network packets.

ERL has much less expressivity than C++. It is also unable to express many classes of
routing algebras that could be defined mathematically. However, it has been designed
to be capable of expressing a wide range of the routing algebras that are interesting
for network routing; it turns out that a small collection of primitives (sets, minimal
sets, lists, simple (duplicate-free) lists, bounded integers, lexicographic products, etc.)
are sufficient for most of the functionality of current routing protocols and for many
novel ones. Billings [Bil09] defines an earlier version of the ERL language (there named
“IRL”) and explains the process of compiling to efficient C++ code. We reformulate
ERL in Chapter 3 but the principle of the language and its compilation process remain
the same.

Although the semantics of ERL let us derive the routing algebra corresponding to any
expressible routing language, they do nothing to help us determine its algebraic prop-
erties. These are the properties that are crucial for determining whether the completed
protocol will converge to a correct solution, and given an arbitrary algebra it is often
not easy – and sometimes impossible – to either prove or disprove that it has a partic-
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Figure 1.4: Overview diagram with routing languages implemented in RAML.

ular property. To solve this we add another level of abstraction, in the form of a new
language built on top of ERL.

In this completed model of the metarouting system, shown in Figure 1.4, routing lan-
guages are specified in the Routing Algebra MetaLanguage (RAML). Although ERL can
be translated into a routing algebra, this new language is much more tightly linked to
the algebras: the semantics of a routing language specification written in RAML is the
algebra plus a complete set of algebraic properties. RAML is carefully designed so that
these properties can be derived from a language specification by if-and-only-if rules,
guaranteeing that it will either confirm a language is safe to use, or else will be able to
say exactly why a language is unsafe.

ERL is now demoted to being an intermediate language emitted by a RAML-to-ERL com-
piler. It is still a valuable abstraction, simplifying the definition and implementation
of RAML: ERL is (by design) a good match for the executable semantics of RAML,
and sufficiently more expressive that we can often extend the RAML language with-
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out having to make any changes to ERL or to the ERL-to-C++ compiler. This allows us
to understand and extend RAML in isolation from the messy details of executable C++
code. We make heavy use of this extensibility in Chapter 5.

Given a RAML specification, we can extract its RAML semantics – a mathematical def-
inition of a routing algebra, plus a set of algebraic properties that it satisfies – based on
the definition of semantics in Chapter 3. Alternatively we can compile the RAML to
ERL, then extract its ERL semantics directly – an expression defining a routing algebra
in a lower-level form, but with no algebraic properties. If we ‘flatten’ the RAML se-
mantics by dropping its properties, we end up with an equivalent algebra to the ERL
semantics (though perhaps expressed in a slightly different form); this requires that
our definitions of RAML semantics, ERL semantics, and RAML-to-ERL compilation
are consistent with each other.

The design of RAML is challenging due to the desire to provide if-and-only-if rules
for the algebraic properties of any RAML expression, while also maximising its ex-
pressivity. The early design of metarouting by Griffin and Sobrinho [GS05] included
a small set of basic routing algebras, a lexicographic product constructor, and a few
more specialised constructors such as the scoped product (to model the inter-AS and
intra-AS distinction of BGP routing). Later work by Gurney and Griffin [GG07] has
shown that scoped products can be implemented using lexicographic products and a
few other primitive constructors, including full property inference. This process of re-
placing specialised operations with more basic generic operations has allowed RAML
to become more powerful and expressive while also simplifying its definition by min-
imising special cases.

The design of RAML is ongoing work, so in this dissertation we will focus on a sub-
set instead of attempting a comprehensive definition. Billings [Bil09] defines a version
of the RAML syntax; as with ERL we will reformulate this definition in Chapter 3 to
better fit our presentation of the system’s architecture, but we do not consider the im-
plementation of the RAML compiler or the process of computing its property inference
rules. Current work by Naudžiūnas [NG11, Nau11] implements a form of RAML in
the Coq theorem prover [BC04]. Coq can automatically verify the correctness of the
inference rules (avoiding the risk of human error when proving rules then transcribing
them into the code), and an implementation of the RAML compiler can be automat-
ically extracted as self-contained OCaml code. The RAML compiler does not use the
theorem prover itself: it is not dynamically proving theorems about a particular rout-
ing algebra specification, it is merely applying the general rules which were verified in
advance by the theorem prover.

All of these components fit together to complete our picture of the metarouting system.
From an implementation perspective, the result is a tool which allows a user to write
a high-level declarative specification of a routing language in RAML and then either
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be told why it is unsafe to use in practice, or get a complete usable routing protocol
that can be deployed and run on any Quagga-compatible router. From a research per-
spective, the result is a well-founded theoretical basis for analysing and discussing the
behaviour of routing protocols, and an exploration of the tradeoffs between safety and
policy expressivity.

1.3 Chapter outline

Chapter 2 summarises the relevant background information, including defining the
concepts of algebraic routing that we build on.

Chapter 3 introduces a new, consistent and detailed definition of the syntax and se-
mantics of ERL and RAML.

Chapter 4 develops the gRIP and gBGP algorithm implementations, to demonstrate
that we really can separate out a lot of the implementation details from the routing
language, and that the language/algorithm concept is a useful abstraction allowing us
to use and analyse each part independently. It also considers what parts of existing
protocols are ‘language’ and what parts are ‘algorithm’; in some cases there are several
different ways to perform the split.

Chapter 4 also describes the details of binding a language implementation (the output
of the ERL-to-C++ compiler) to the algorithm implementation. The binding is briefly
described by Billings [Bil09] from the routing language perspective; here we discuss it
from the routing algorithm perspective, which introduces an additional set of concerns,
to give a more complete picture. (The design and implementation of this interface was
performed by the author in conjunction with John Billings.) The binding needs to pro-
vide the bridge between the provably-correct theoretical model of language, and the
low-level messy world of algorithm code, in a way that is both theoretically sound (by
avoiding introducing a lot of non-analysable complexity that may break the applica-
bility of correctness properties to the implementation) and practically sound (efficient
and compatible with current algorithm implementations).

Chapter 5 looks at the nature of router configuration in vector protocols, where the
specification and computation of policy is split across multiple routers. Because of the
goal to keep the algorithm binding simple (so it doesn’t introduce correctness bugs), we
put the complexity in the language side where we can analyse it theoretically. We add
simple extensions to the binding and algorithm implementations to handle the new
form of language. This does not require any modifications to the algebraic routing
theory: the new language model can be mapped onto the original model, allowing
all the existing theoretical results to be reused. Given our configuration model, some
new protocol features are relatively straightforward to implement: we add a form of
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outbound route filtering that is more general than the current ORF work on BGP, to
demonstrate the utility of the model.

Chapter 6 extends the system to support route maps, as an expressive form of policy
that is widely supported by standard routing protocol implementations today. This
changes the structure of computations performed by the generic routing algorithms,
so we explore the consequences this has on algebraic properties.

In Chapter 7 we demonstrate how these extensions to the metarouting model work in
practice by running an example through the whole system.

1.4 Contributions

The main contribution of this dissertation is to demonstrate that the concept of meta-
routing can be applied not just to an abstract shortest paths algorithm but to real vector
routing protocols, incorporating much of the complexity that is provided by current
implementations while building on a strong theoretical framework that provides flex-
ibility and safety guarantees that are missing from network routing. In particular, this
consists of:

• An analysis of several vector protocols (primarily RIP, BGP and EIGRP) based on
reverse engineering the protocol specifications and implementations, to provide
an understanding of their features and their behaviour from the perspective of
algebraic routing. This highlights a number of areas where previous work on
metarouting has been insufficient for modelling vector protocols.

• An implementation of generalised vector routing algorithms, based on Quagga’s
RIP and BGP protocols, that can execute a compiled routing language to set up
the routing tables of a network.

• An extension of the metarouting theory and implementation to support the spec-
ification of policy languages that have separate configuration data and perform
separate computations at the export and import interfaces of routers when run-
ning a Bellman-Ford–style algorithm.

• An analysis of several current protocol implementations to determine the com-
mon functionality and full extent of the varied features that are referred to as
route maps, so that we can understand the scope of the term, and to identify
their different approaches to designing route map languages.

• An extension of the metarouting theory to support functionality similar to route
maps as a more expressive method for configuring policy on a router.



Chapter 2

Background

This chapter describes the technologies, concepts and terminology that the dissertation
builds on.

2.1 Shortest paths problem

The fundamental mathematical model we use for network routing is the shortest paths
problem. In particular we are interested in the single-source shortest paths problem
over directed graphs with no negative edge weights [CLR92]. Figure 2.1 illustrates
such a graph. In general a graph G = (V, E) consists of a set of vertices V, and a set of
edges E ⊆ V ×V, along with an edge weight function w : E→N. (We will sometimes
use the term node for vertices and arc for edges.) An edge (v, v) from a vertex to itself
is not permitted.

A path p = [v0, v1, . . . , vk] (where each adjacent pair of vertices in the path is in E)
has path weight w(p) = w(v0, v1) + w(v1, v2) + . . . + w(vk−1, vk). A zero-length path
p = [v0] has weight 0.

The shortest path weight δ(u, v) from vertex u to v is min({w(p) | p ∈ P(u, v)}) where
P(u, v) is the set of all paths p = [u, . . . , v] in the graph, or ∞ if there are no such
paths. A particular path p ∈ P(u, v) is a (not necessarily unique) shortest path if
w(p) = δ(u, v).

We can represent a graph as an adjacency matrix A, where A(u, v) = w(u, v) if (u, v) ∈

22
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Figure 2.1: A directed graph with integer edge weights.

E, and ∞ otherwise. Figure 2.1 has the adjacency matrix

A =



a b c d e

a ∞ 2 1 ∞ ∞
b 1 ∞ 10 1 ∞
c 2 ∞ ∞ ∞ ∞
d ∞ 1 ∞ ∞ ∞
e ∞ 5 3 ∞ ∞

.

The solution to the single-source shortest paths problem with source u is a vector D
where D(v) = δ(u, v). There are a number of well-known algorithms that can be used
to find solutions, such as Dijkstra’s algorithm [Dij59] (the basis of link state routing,
used by the OSPF and IS-IS routing protocols) and the Bellman-Ford algorithm (the
basis of vector routing, used by the RIP and BGP protocols). This dissertation focuses
exclusively on variants of the Bellman-Ford algorithm.

2.1.1 Bellman-Ford

The algorithm known as Bellman-Ford was originally developed by Bellman [Bel58]
and by Ford and Fulkerson [FF62]. It is typically described in pseudocode, as in Fig-
ure 2.2 (based on the version from Cormen, Leiserson and Rivest [CLR92]).

We can also express the algorithm as an iteration over an adjacency matrix A and a
vector X, which provides a different way to view its behaviour. For our example graph
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1 for each vertex v ∈ V[G]
2 do x[v]← ∞
3 x[d]← 0
4 for i← 1 to |V[G]| − 1
5 do for each edge (u, v) ∈ E[G]
6 do if x[v] > x[u] + w(u, v)
7 then x[v]← x[u] + w(u, v)

Figure 2.2: Bellman-Ford algorithm pseudocode. Input is graph G and source vertex d;
output is vector x of shortest path weights to every vertex.

with source vertex d, we start with

X(0) = I =
[ a b c d e

d ∞ ∞ ∞ 0 ∞
]

representing the best known distance from d to each other vertex as of step 0. We then
perform the iteration

X(k+1) = (X(k) ·A) min I

where the operator “·” is based on the standard rules of matrix multiplication but with
× replaced by + and + replaced by min:

(X ·A)(i, j) = min
q∈V

(X(i, q) + A(q, j)).

(This is a variation of the matrix multiplication solution to the general all-pairs shortest
paths problem [CLR92], restricted to a single row.) Depending on the order used by the
iteration over edges in the Bellman-Ford algorithm, it will be performing an equivalent
computation to this matrix method in each step. The BF algorithm may use a different
order over edges, in which case it may produce different intermediate results (as up-
dates to x[v] may be read as x[u] by a later step in the same iteration of the outer loop),
but a property of the algorithm is that the final output will be the same regardless of
order and therefore the same as the matrix method.

Applying this to our example gives

X(1) =
[ a b c d e

d ∞ 1 ∞ 0 ∞
]

X(2) =
[ a b c d e

d 2 1 11 0 ∞
]

X(3) =
[ a b c d e

d 2 1 3 0 ∞
]

X(4) =
[ a b c d e

d 2 1 3 0 ∞
]
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1 for each vertex v ∈ V[G]
2 do x[v]← ∞
3 x[d]← 0
4 for i← 1 to |V[G]| − 1
5 do for each vertex v ∈ V[G]
6 do for each vertex u ∈ V[G] where (u, v) ∈ E[G]
7 do if x[v] > x[u] + w(u, v)
8 then x[v]← x[u] + w(u, v)

Figure 2.3: Distributed Bellman-Ford algorithm pseudocode.

Given that no negative edge weights are allowed in our graphs, the Bellman-Ford al-
gorithm will reach a stable solution after |V| − 1 iterations: X(|V|−1) = X(|V|−1) ·A, and
this will be equal to the shortest paths solution D. In this example |V| = 5, so the
solution is X(4).

2.1.2 Distributed Bellman-Ford

In network routing, each vertex in the graph corresponds to a router and each edge
corresponds to a communication link between routers.

If each router in a network of size N stores the complete adjacency matrix A, the algo-
rithm’s per-router memory requirements are O(N2), leading to a scalability problem
in large networks. Routing protocols based on Dijkstra’s algorithm, such as OSPF,
are typically restricted to small networks (with partitioning mechanisms to combine
them into larger networks) due to this scalability issue. However, protocols based on
Bellman-Ford can use a distributed variant of the algorithm in which the requirements
on each individual router scale as O(N), allowing larger networks to be handled effi-
ciently, with the tradeoff of slowing the algorithm’s execution by adding communica-
tion delays.

The distributed Bellman-Ford algorithm (DBF) [BG92, Sec. 5.2.4] is based on the ob-
servation that the original BF algorithm can be written as in Figure 2.3, and that the
iteration on line 5 can be executed in parallel with every router processing the v corre-
sponding to itself. In this case, router v will only need to know the element x[v], plus
x[u] and w(u, v) for each router u to which it has an edge. These edges correspond to
network links, so v can easily determine these values by communicating directly with
each u over the network. The amount of data stored and processed by v will scale with
the number of routers to which it has an edge, so it is bounded by O(N).

As a final modification, the loop on line 4 (which implies each router v will run lines
5–8 and then wait for every other router to finish before proceeding in lockstep) is re-
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moved: every router repeats lines 5–8 forever and asynchronously. Although it is hard
to tell how long the algorithm will now take to reach the solution, it will eventually con-
verge to the same solution as the original Bellman-Ford algorithm. Bertsekas [BG92]
gives a proof of convergence for the asynchronous DBF shortest-paths algorithm, while
Sobrinho [Sob03] gives a proof for an asynchronous message-passing path vector pro-
tocol based on DBF that is generalised to certain routing algebras.

2.1.3 Counting to infinity

Although we stated that Bellman-Ford’s iterations will reach a stable solution, this
assumed we started with the given X(0) containing infinities and 0. In a DBF imple-
mentation for use in network routing, we need to cope with dynamic changes to the
network (vertexes and edges being added and removed). Restarting the algorithm
from a clean slate after every minor change would cause significant performance prob-
lems in highly dynamic networks. Since most changes will be small and their effects
will be localised, it is common to start a new iteration from the algorithm’s state before
the change: X′(0) = X(k).

In our example, we will modify the adjacency matrix A by removing the edge from d
to b,

A′ =



a b c d e

a ∞ 2 1 ∞ ∞
b 1 ∞ 10 1 ∞
c 2 ∞ ∞ ∞ ∞
d ∞ ∞ ∞ ∞ ∞
e ∞ 5 3 ∞ ∞

,

and start the iteration with the state

X′(0) =
[ a b c d e

d 2 1 3 0 ∞
]
.

This corresponds to d losing network connectivity after the routing algorithm had
reached a stable state. Now we can run the matrix iteration again, giving the sequence
shown in Figure 2.4.

In this case, the algorithm is not converging on a stable solution. This is the counting
to infinity problem, caused by stale information circulating through the network. At
each step, node a thinks the best route from d is through b while b thinks it is through
a. Since d is disconnected and the true weights of shortest paths from it are ∞, this
stale information is always preferred over the up-to-date true information. Different
routing protocols take different approaches to resolving this problem, which we will
discuss later. As long as this stale information is purged from the system eventually,
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X′(0) =
[ a b c d e

d 2 1 3 0 ∞
]

X′(1) =
[ a b c d e

d 2 4 3 0 ∞
]

X′(2) =
[ a b c d e

d 5 4 3 0 ∞
]

X′(3) =
[ a b c d e

d 5 7 6 0 ∞
]

X′(4) =
[ a b c d e

d 8 7 6 0 ∞
]

X′(5) =
[ a b c d e

d 8 10 9 0 ∞
]

X′(6) =
[ a b c d e

d 11 10 9 0 ∞
]

Figure 2.4: Demonstration of counting to infinity behaviour.

the BF algorithm is guaranteed to converge to the correct solution regardless of the
initial state X′(0).

2.2 Algebraic routing

In our description of the shortest paths problem, we represent path weights as values
from the set N∞ = N ∪ {∞} (where ∞ represents the absence of any path), and edge
weights also as values from N∞ (where ∞ represents the absence of an edge). A path
weight is the sum of its edge weights, and the shortest path is the minimum of all path
weights. The Bellman-Ford algorithm similarly uses the + operator and either the min
operator or ≤ order in defining its iteration to compute the shortest paths.

Algebraic routing is based on the shortest paths problem, but generalised to work over
any algebra of a certain structure with certain algebraic properties. This section will
introduce and define the algebraic concepts that are needed.

2.2.1 Types

The most fundamental component is types, which we consider to simply be sets of
values. Common types are defined in Table 2.1.
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Notation Meaning
1 Unit type, {1}
Z Integers
N Natural numbers (non-negative integers)
N+ Positive natural numbers
N∞ Natural numbers plus infinity, N∪ {∞}
T∗ Finite lists, with elements of type T
T∗simp Simple lists, i.e. lists where no element occurs more than once

S ] T Disjoint union, {inl(s) | s ∈ S} ∪ {inr(t) | t ∈ T}
℘(T) All finite1 subsets of T, i.e. sets whose elements are of type T
℘�(T) All finite minimal subsets of T, i.e. sets S ∈ ℘(T) where a, b ∈ S⇒ a ⊀ b

Table 2.1: Definitions of common types.

2.2.2 Semigroups

Another important component of these algebras is the semigroup, written as

(S, ⊗)

and consisting of a signature type S and a binary operator ⊗ of type S× S → S (that
is, it takes two values of type S and returns one of type S). A semigroup only requires
one algebraic property:

Associative:
(a⊗ b)⊗ c = a⊗ (b⊗ c) ∀a, b, c ∈ S

A semigroup may optionally have further properties, and may contain elements with
special properties:

Commutative:
a⊗ b = b⊗ a ∀a, b ∈ S

Selective:
a⊗ b = a ∨ a⊗ b = b ∀a, b ∈ S

Identity element α ∈ S:
α⊗ s = s⊗ α = s ∀s ∈ S

Annihilator element ω ∈ S:

ω⊗ s = s⊗ω = ω ∀s ∈ S
1For convenience we differ slightly from the usual definition of ℘(T) as power set, which includes

infinite subsets of T when T is itself infinite.
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Examples of semigroups include (N∞, +) which has identity 0 and annihilator ∞;
and (N∞, min) with identity ∞ and annihilator 0. Both are commutative, but only
(N∞, min) is selective. The semigroup (℘(N), ∪) has identity ∅ (the empty set) but
no annihilator.

2.2.3 Bisemigroups

The shortest paths problem can be generalised using the algebraic structure of bisemi-
groups,

(S, ⊕, ⊗),

where the additive component (S, ⊕) and the multiplicative component (S, ⊗) are
both semigroups. A bisemigroup may optionally have various properties:

Distributive:
a⊕ (b⊗ c) = (a⊗ b)⊕ (a⊗ c) ∀a, b, c ∈ S

Non-decreasing:
a = a⊕ (b⊗ a) ∀a, b ∈ S

Increasing:
a 6= α⊕ ⇒ a = a⊕ (b⊗ a) 6= (b⊗ a) ∀a, b ∈ S

Some of these properties are linked – any algebra that is increasing will also be non-
decreasing, and typically only selective algebras can be non-decreasing.

For example, (N∞, min, +) is a distributive, non-decreasing bisemigroup. From this,
the generalisation of the shortest paths problem is straightforward: the path weight
and edge weight type N∞ is replaced by S, the weight concatenation operator + is
replaced by ⊗, and the best path selection operator min is replaced by ⊕. The constant
0 is replaced by the multiplicative identity α⊗, while ∞ is replaced by the additive
identity α⊕. The Bellman-Ford algorithm (and similarly the distributed Bellman-Ford
algorithm) can be generalised to work over bisemigroups by making the same replace-
ments.

The special case of a distributive bisemigroup with a commutative ⊕, a multiplica-
tive identity α⊗, and an additive identity α⊕ equal to multiplicative annihilator ω⊗, is
commonly known as a semiring, and its use in the generalised shortest paths problem
has been explored extensively [Car79, GM84, GM08]. More recently it has become ap-
parent that non-distributive bisemigroups are of importance for understanding Internet
routing, leading to an exploration of their behaviour [Sob03, GG08, Gur09]. One im-
portant result is that while algorithms such as Bellman-Ford and matrix iteration will
only compute a globally optimal solution (the chosen path between any two nodes will
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be the best of all possible paths between them) if the algebra is distributive, they will
still compute a stable solution that we call locally optimal with non-distributive algebras
(given that the algebra is at least increasing). A node may not select the best of all paths
in the network, but it will select the best of the paths that are an extension of its neigh-
bour’s selected paths. This is a valuable concept in network routing as it matches the
common next-hop forwarding model, as well as matching the behaviour of BGP. The
ability to relax the distributivity requirements provides far greater expressivity when
designing routing algebras.

2.2.4 Preorders

Another important component of routing algebras is the preorder,

(S, �)

where � is a binary relation over S. A preorder requires two properties:

Reflexive:
a � a ∀a ∈ S

Transitive:
a � b ∧ b � c⇒ a � c ∀a, b, c ∈ S

Note that it is possible for values to be equivalent but inequal:

a ∼ b ≡ a � b ∧ b � a.

Similarly it is possible for values to be incomparable:

a # b ≡ ¬(a � b) ∧ ¬(b � a).

A partial order is an antisymmetric preorder (no inequal values are equivalent), and a
total order is a partial order in which no values are incomparable:

Antisymmetric:
a � b ∧ b � a⇒ a = b ∀a, b ∈ S

Total:
a � b ∨ b � a ∀a, b ∈ S

A strict partial order ≺ (an irreflexive, transitive relation) can be derived from any
preorder �:

a ≺ b⇔ a � b ∧ ¬(b � a)
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2.2.5 Order transforms

An alternative to bisemigroups in routing is order transforms: algebraic structures of the
form

(S, L, �, B)

where S and L are types, � is a preorder over S, and B is a binary operator of type
L× S → S. To apply order transforms to the shortest path problem, we use S for path
weights, L for edge weights, � for picking the best of several path weights (we will
assume it is a total order so there is always a single best), and B for computing the
weight of a path extended by an extra edge.

This is the structure we will use throughout most of this dissertation, as it provides the
most appropriate match for the behaviour of complex vector routing protocols. As we
move further away from the original model of shortest paths, we use different termi-
nology: instead of weights we will call S the type of metrics (representing a potentially
complex set of data about the path), L the type of labels or policies (representing a po-
tentially complex set of decisions about routing behaviour associated with a network
link), � encodes some notion of ‘best’ paths (not necessarily ‘shortest’ in any sense),
and B is the policy application function.

In an order transform, the preorder � is the counterpart to the bisemigroup’s additive
operator ⊕; there is a direct correspondence between the common cases of a total pre-
order and a selective ⊕ (typically defined as a � b ⇔ a = a ⊕ b). The application
function B is an asymmetric generalisation of ⊗ where the operator’s two arguments
are now of different types.

The algebraic properties that apply to bisemigroups correspond to properties over or-
der transforms:

Distributive:
a � b⇒ c B a � c B b ∀a, b ∈ S, c ∈ L

Non-decreasing:
a � c B a ∀a ∈ S, c ∈ L

Increasing:
a 6= ω ⇒ a ≺ c B a ∀a ∈ S, c ∈ L

Infinity element ω ∈ S:
c B ω = ω ∀c ∈ L

Distributivity can be thought of as ‘order-preserving’: if one path is preferred over
another, then applying the same policy to both will not change the order of preference.
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This is important in some situations as it means we can identify the ‘best’ path either
before or after applying policy, and will get the same answer in either case.

There are many other similar algebraic structures that can be used. Order transforms
can be expressed as (S, �, F) where arcs are labelled with functions from a set F ⊆
S → S and the path weight computation is f (s) instead of l B s, but we avoid using
this formulation as it maps less clearly onto implementations where configuration data
is explicitly separated from computation. The quadrants model described by Griffin
and Gurney [GG08] also includes semigroup transforms (S, L, ⊕, B) and order semi-
groups (S, �,⊗), while Sobrinho [Sob05] included a function mapping S onto a new
‘weight’ type W and defined � over W instead of over S – but the principles remain
the same in each case.

2.2.6 Example algebras

There are a number of basic routing algebras which we will build on later. We have
mentioned (N∞, min, +) as a bisemigroup that can be used to implement the shortest
paths problem. We can define a shortest-paths order transform algebra that works
similarly:

sp = (N∞, N∞, ≤, +)

where ≤ is the standard integer less-than-or-equal order. This algebra is distributive
and non-decreasing:

a ≤ b⇒ c + a ≤ c + b ∀a, b, c ∈N∞,

a ≤ c + a ∀a, c ∈N∞.

However, it is not increasing because we include 0 in L: the case a = 0 and c = 0 is a
counter-example to the property

a 6= ∞⇒ a < 0 + a ∀a ∈ S.

Some algebras can be best expressed by a finite table. The customer–provider–peer
relationships and constraints described by Gao and Rexford [GR01] can be modelled
algebraically [Sob03, GS05] with

cpp = ({C, R, P, ∞}, {c, r, p}, �, Bcpp),

where � is defined by the order C ≺ R ≺ P ≺ ∞. Figure 2.5 shows a simple hierarchi-
cal network labelled with this algebra. Bcpp is defined by the table

Bcpp C R P ∞
c C ∞ ∞ ∞
r R ∞ ∞ ∞
p P P P ∞
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Figure 2.5: A customer–provider–peer network.

For example, say a route received by j from a peer has metric R. The arc to i from its
customer j has label c. Since c Bcpp R = ∞, the route will be filtered out. Conversely,
the arc to k from its provider j has label p. Since p Bcpp R = P, the same route sent
across the arc from provider to customer will be accepted and given new metric P to
indicate it came from a provider. This definition of Bcpp guarantees that paths will
satisfy the valley-free property defined by Gao [Gao00]: a route that travels ‘down’ the
hierarchy cannot subsequently travel back up.

The cpp algebra is distributive and non-decreasing, which can be verified by enumer-
ating all possible cases. Other algebras constructed in a similar manner may have
different properties. Our table only included three rows (the policies c, r and p); Grif-
fin [Gri10] explores all 24 possible rows (for a set of three metrics plus infinity) that
retain the non-decreasing property but do not all retain distributivity.

We can also represent the path component of a path-vector routing protocol as a rout-
ing algebra

paths = (id∗simp ∪ {∞}, id× id, �listLen, Bpaths).

The metrics are either lists of router identifiers with no repeated values, or are infinity.
These identifiers are likely to be implemented as integers, but they can be any arbitrary
data type as far as our language definition is concerned – we will refer to them as the
type ‘id’. Shorter lists are preferred over longer lists by �listLen, and infinity is least
preferred. The arc from node i to node j is labelled with a pair of node identifiers, (i, j).
We define Bpaths as

(i, j) Bpaths l =

{
i :: l if j 6∈ i :: l
∞ otherwise

where :: means list prepending. In this definition, i is prepended to the path when it
sends the route to j; but if j is already in this list, the route is filtered out (its metric is
set to ∞) because this indicates a loop. This models the behaviour of BGP’s AS_PATH

attribute.
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The paths algebra is increasing: Bpaths will either increment the length of the path or
set it to infinity, making it less preferred under �listLen. It is not distributive: the met-
ric [1, 2] is preferred over the metric [1, 3, 4], but applying the label (0, 2) to both will
result in the metrics ∞ and [0, 1, 3, 4], flipping the order of preference and violating
distributivity.

2.2.7 Constructing algebras

Although it is possible to define algebras as in the previous section, and prove their
algebraic properties by hand, this is slow and error-prone as the complexity increases.
Metarouting is based around the concept of algebraic constructors: a routing language
can be designed by breaking the problem down into simple components, each corre-
sponding to a pre-defined algebra such as sp or paths, then using a selection of con-
structors to build up the components into the completed algebra.

One of the most important is the lexicographic product operator ~×. As an example, the
algebra

sp ~× paths

has metrics that are pairs of values, one from sp’s metric set and one from paths’s; labels
are similarly pairs; and the new algebra’s B applies labels to metrics componentwise
based on Bsp and Bpaths. The new algebra’s � is a lexicographic order: given two
metrics a = (a1, a2) and b = (b1, b2), the new order is

a � b⇔ a1 ≺ b1 ∨ (a1 ∼ b1 ∧ a2 � b2).

In this example, the new algebra can be found to be increasing but non-distributive.
Gurney and Griffin [GG07] show that these properties can be determined trivially
for any lexicographic product algebra, when certain properties are known for the two
component algebras.

The direct product operator × is very similar to ~× but uses the non-lexicographic order

a � b⇔ a1 � b1 ∧ a2 � b2.

The function union operator ] combines two algebras that have the same metric type:

(S, L1, �, B1) ] (S, L2, �, B2) = (S, L1 ] L2, �, B]).

This performs a disjoint union of the label types; we distinguish values from the two
sets by tagging them as ‘in left’ or ‘in right’. The new operator B] depends on the label
tag:

inl(l1) B] s = l1 B1 s
inr(l2) B] s = l2 B2 s
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2.3 Vector routing protocols

Vector routing protocols are network protocols based on the distributed Bellman-Ford
algorithm. They define the low-level behaviour of the routers in a network – the byte
layout of network packets they transmit between each other, and the required compu-
tation (state machines for setting up sessions between routers, timing requirements to
ensure the protocol stays responsive without overloading the network, route process-
ing requirements to prevent routing loops, and so on) – as well as the intended inter-
pretation of fields in the route metrics to be used in routing policy. The protocols im-
plement the DBF algorithm as a (usually non-explicit and non-obvious) consequence
of their requirements on network communication and processing.

Vector protocols are typically split into two categories based on their metric type: dis-
tance vector protocols such as RIP and EIGRP have metrics that represent only the cost
of reaching the destination, whereas path vector protocols such as BGP use the metric to
store some representation of the path that the route follows. Path vector protocols can
use the path information to detect and prevent routing loops, whereas distance vector
protocols need different mechanisms.

This section introduces the terminology and concepts used the RIP and BGP protocol
specifications, as the rest of the dissertation will examine and extend these protocols. In
particular, we describe them here from the low-level perspective in which the protocols
are specified, and in Chapter 4 we recast them in the algebraic routing model.

A common concept in Internet routing protocols is the destination prefix [FL06]. This
can usually be treated as an opaque identifier for the source node d in the shortest
paths problems – that is, the source of routing information, but the destination of data
traffic flowing back along the computed routes. (In this dissertation we focus almost
exclusively on the flow of routing control messages, not the flow of data, so the di-
rected edges in our graphs correspond to the direction in which routers will advertise
information about the availability of a path to a destination prefix.)

Destinations on the Internet each have an IP address; for simplicity we will assume
IPv4, in which an address is a 32-bit number expressed as a sequence of four 8-bit num-
bers such as “128.232.0.20”. There are often many separately-addressable destinations
on a local network sharing a single connection to the Internet. To reduce the amount of
information that Internet routers must maintain, destinations are grouped by a shared
address prefix: “128.232.0.0/16” is a prefix representing the addresses whose first 16
bits are the same as the first 16 bits of 128.232.0.0, i.e. the range of addresses from
128.232.0.0 up to 128.232.255.255. These destination prefixes are used as the row in-
dexes in the X matrix of the Bellman-Ford algorithm – the router will compute the
distance to each prefix independently.

When a router receives a data packet, it must consider all routes whose destination pre-



36 2.3. VECTOR ROUTING PROTOCOLS

fix matches the destination address of the packet. The address may match many pre-
fixes, so longest prefix matching is used: if the router has routes for destination prefixes
128.232.0.0/16 and 128.232.0.0/24, both matching a destination address 128.232.0.20, it
will pick the route 128.232.0.0/24 with the longer (hence more specific) prefix.

The functionality of a router can be considered as two separate layers. The control plane
runs the routing protocol and computes the best path to each destination prefix, stor-
ing the result in a routing table (effectively a lookup table from destination prefix to
metric and an identifier of the next hop on the path with that metric). The forwarding
plane receives data packets and determines the next router in the path to send them on
to, using longest prefix matching, based on data in a forwarding table (a lookup table
from prefix to next hop). In practice the relationship between the routing tables and
forwarding tables may be quite complex, especially in the cases of route redistribution
between multiple protocols on a single router [LXZ07] and VPNs (virtual private net-
works) with multiple forwarding tables per router [RR06, BG03]. For the purposes of
this dissertation we will treat the forwarding table as a straightforward mapping of the
routing table, as we are working entirely in the control plane.

2.3.1 RIP

RIP (first specified in RFC 1058 [Hen88]; most recently in RFC 2453 [Mal98]) is a simple
distance vector protocol designed for small networks. It is based on a “soft state” mech-
anism [Cla88]: there is no session setup handshake between neighbouring routers, and
each router periodically advertises its best known distance to each destination prefix,
so a router that is added to the network or recovering from an error can simply wait
for a short time period (typically 30 seconds) to receive all route advertisements and
reconstruct its routing table. Instead of remembering the routes advertised by each
neighbour, the router simply remembers the single best route in its routing table, and
updates it immediately when receiving an advertisement message that either has a bet-
ter metric than the current best route, or is sent by the router that provided the current
best route. This is an asynchronous implementation of the distributed Bellman-Ford
algorithm, with each router updating its column of the matrix X based on its neigh-
bours’ advertisements of their own columns of X, so it will iteratively converge on a
correct routing solution.

Route metrics in RIP are simply integers from 1 to 15. The cost associated with a link
is a positive integer, typically 1. This means the maximum diameter of the network
(i.e. the longest of all shortest paths) is 15 hops – if the network is too large then some
routers will be unable to find paths to each other.

Routers running RIP communicate using UDP with no reliability mechanism; packet
loss will result in route advertisement messages being missed until they are readver-
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tised 30 seconds later. To cope with persistent network failure or routers being re-
moved from the network, a router that has received a route advertisement will expire
it after some time period (typically 180 seconds) if it has not been readvertised.

RIP deals with the counting to infinity problem of the DBF algorithm through a num-
ber of means. Firstly, the maximum metric is a small integer (15) so “infinity” can be
counted to reasonably quickly without a great waste of network resources. Secondly,
triggered updates aim to make the protocol count to infinity faster: whenever a router
makes a change to its routing table, it should advertise its new routes almost imme-
diately (typically within 1 to 5 seconds; the small delay is to avoid overloading the
network) instead of waiting for the 30 second timer.

Thirdly, the split horizon feature specifies that if some router a learned its best route
to some destination from router b, it must not advertise that route back to b. A route
[. . . , b, a, b, . . .] could not possibly be a shortest path (it would be shorter to remove
the cycle) so omitting it does not affect the correctness of the routing solution, and it
prevents counting to infinity around a cycle between two adjacent nodes (though it
has no effect on counting around longer cycles). Finally, the poisoned reverse feature is a
modification of split horizon: if a and b each think the best route is through each other
(due to dynamic network changes creating a temporary loop), split horizon would
result in neither of them advertising the route to the other, and each would retain that
route until a timeout is reached. Poisoned reverse allows them advertise the route with
the metric replaced by an “infinity” marker, causing the opposite router to immediately
stop using that route, leading to faster convergence of the protocol.

All these features are a tradeoff between convergence time and network traffic over-
head and protocol complexity, trying either to prevent the counting to infinity problem
or to make it terminate sooner.

2.3.2 BGP

Whereas RIP is designed for use in small networks, BGP [RLH06] is designed to con-
nect the whole Internet together (albeit a smaller Internet than today’s, leading to some
scalability problems). It does this with a two-level hierarchy based on autonomous sys-
tems (ASes), illustrated in Figure 2.6. An AS is a group of routers – sometimes a single
router, sometimes thousands spread across the world – identified by a 16-bit2 number.
Each router can only belong to a single AS.

Within an AS, BGP assumes full mesh connectivity (every router is connected directly
to every other router). This could be implemented with physical links between every

2 A scalability problem as the number of registered ASes has now exceeded 216, requiring some hacks
to expand to a 32-bit number without breaking compatibility [VC07]; we will ignore this detail in the
rest of this dissertation and assume 16-bit AS numbers.
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Figure 2.6: Autonomous systems connected by BGP.

pair of routers, but in practice the connectivity is typically provided by a separate rout-
ing protocol such as RIP or OSPF running inside the AS, referred to as the AS’s Interior
Gateway Protocol (IGP). The IGP computes paths between each pair of routers over a
non-mesh physical network, and BGP implements its mesh on top of this layer without
needing to know the details of the physical network layout.3

In contrast to RIP, BGP is a “hard state” protocol: routers communicate using sessions
over reliable TCP channels, with a complex state machine to run the session handshake
and subsequent communication. There are many optional extensions to BGP, and this
handshake allows routers to exchange a list of their capabilities and determine which
features can be safely used. When two routers set up a session, they first send their
whole routing table (subject to filtering) to each other, then subsequently only send
data for changes in their routing table. This allows the communication cost to scale
with the number of route changes in the network, rather than the total number of
routes.

BGP routers in the same AS (which is detected in the session handshake process) com-
municate in Internal BGP mode (IBGP). The full mesh makes this relatively straight-

3 BGP route reflectors [BCC06] provide an alternative to mesh connectivity, improving scalability in
larger networks, but are designed to provide similar behaviour to the mesh and do not significantly
change the operation of BGP, so will ignore this detail too.
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forward. When router d in Figure 2.6 learns of a route to destination address prefix p
from the router outside its AS, it advertises the new route directly to every other router
in its AS. When router c learns that route from d, which it knows is inside its AS, it
does not need to advertise it to a or b as they will have already received it directly
from d. This means a route will never traverse more than a single link inside the AS,
preventing intra-AS routing loops.

BGP routers that are connected but that are in different ASes communicate in External
BGP mode (EBGP). There are too many ASes for a full mesh to be feasible, so EBGP
relies on the distributed Bellman-Ford algorithm, with an AS acting collectively as a
single node: each router advertises its known routes to the neighbouring routers in
different ASes, while IBGP keeps the router synchronised with the others in its own AS.
Although IBGP cannot form loops inside a single AS, EBGP can form loops through a
cycle of ASes. To detect and eliminate looping routes, BGP stores each route with an AS
path, and a router adds its own AS number onto the front of the path when advertising
the route over EBGP. For example, a router in AS 300 may see a route to p with path
“100 200 400”. If this route was advertised back to router c in AS 200, the router would
detect that 200 is already in the list and reject the route as it would form a cycle.

The AS path is also used as a part of the route’s metric, when a router picks the best
of multiple available routes to a destination; shorter paths are preferred over longer
paths, all else being equal. The metric contains a number of other BGP attributes, each
of which has a name (specified in the BGP RFC or in extension RFCs, to ensure global
agreement on the semantics of each name) and a value (sometimes an integer, some-
times a more complex structure such as a list; the attribute name determines the value’s
data type). The BGP decision process for picking the best route is based on examining
the attributes in sequence and rejecting routes that are not the best in that attribute,
until a single route remains. The sequence is defined as:

1. LOCAL PREF (local preference) – this attribute is set by an AS’s router when receiv-
ing routes from EBGP (i.e. from outside the AS), giving the AS full control over
route selection within itself. 32-bit integer; higher values are preferred.

2. AS PATH – shorter paths are preferred. Because local preference is checked before
path length, BGP is not a shortest paths algorithm, but length is checked be-
fore any other attributes to discourage the selection of very long paths. A router
prepends its AS number to the front of the list when sending the route to another
AS over EBGP.

3. ORIGIN – set when the route is originated and never changed by other routers. It
has the value “IGP” (the route was originated by the BGP router itself, based on
no external information), “EGP” (learned from an External Gateway Protocol that
is not BGP; no such EGP is used nowadays so this value is mostly obsolete), or
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“incomplete” (learned from some other source, e.g. through route redistribution
from another protocol on the same router). “IGP” is preferred over “EGP”, which
is preferred over “incomplete”.

4. MULTI EXIT DISC (multiple exit discriminator, or MED) – set by an AS’s router
when sending the route over EBGP to another AS. If the first router has multiple
connections (exits) to the second AS, this lets it influence which one the second
AS will prefer to use. 32-bit integer; lower values are preferred, but by default
two MED values are considered incomparable if they were set by different ASes
(effectively this is a partial order and each AS has its own set of MED values
disconnected from all others; it would be meaningless to compare MEDs from
different ASes as integers).

5. Prefer EBGP over IBGP – provides a form of “hot potato” behaviour by preferring
routes that leave the current AS (avoid the cost of transiting traffic through the
AS).

6. IGP COST – if the route was received over an IBGP connection, this is the cost of
the IGP path underlying that IBGP link (typically the integer metric from RIP or
OSPF or EIGRP). Routes with a lower cost are preferred, so the AS will choose
the route that is least expensive to transit over its own network (subject to all
earlier constraints).

7. Advertiser’s BGP Identifier – if a single best route has still not been selected, the
‘identifier’ of the BGP router that advertised the route (typically an IP address of
a network interface on that router, which ought to be globally unique) is used as
an arbitrary tie-breaker.

8. Advertiser’s peer address – poorly-configured networks may have multiple routers
with the same BGP identifier. As a last resort, a selection is made based on the
IP address that the route was received from, which is necessarily unique since a
router cannot have multiple connections to a single IP address.

BGP policy is the set of rules configured by a network administrator that determine how
to alter these attributes when receiving routes or advertising routes to neighbouring
routes. The BGP RFC does not specify how policy should be configured or how much
flexibility should be provided; it just defines the semantics of the attributes and a few
constraints on their usage, leaving the rest as an implementation detail.

MED details

The standard definition of MED comparison has led to a number of problems, and is a
useful demonstration of the difficulties caused by BGP’s approach to routing protocol
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design. It has been shown [MGWR02, GW02] that certain uses of the MED attribute
can trigger persistent oscillations, preventing BGP from ever converging to a stable
solution and wasting network resources. Even when these problems are avoided by
careful network configuration, some implementations of the BGP decision process can
result in incorrect path selection that is not determined solely by the route metrics.
For example, Cisco’s original BGP implementation worked by iterating over the list
of routes in an arbitrary sequence (depending on the timings of when route adver-
tisements were received), maintaining a single pointer to the best route seen so far,
and updating it whenever the iteration reaches a better route. Consider the following
sequence of routes:

AS PATH MED IGP COST

A 100 . . . 10 5
B 200 . . . 10 4
C 100 . . . 20 3

(Omitted attributes are assumed to be identical for all routes.) A and B were received
from different ASes, so their MEDs are incomparable. Instead the IGP cost is compared,
and B is better than A. Now the best route, B, is compared against C, and C has a lower
IGP cost so it is selected as the best. However, if A and C were compared to each other
then A would be preferred as they were received from the same AS (so their MEDs
are comparable) and A has a lower (better) MED value. The order of comparisons has
resulted in a route being selected despite there being a better route available.

This happens only because of the special behaviour of MED; the sequential algorithm
is correct except for this detail. Cisco added the configuration option named “bgp
deterministic-med” [Cis09b] to fix this behaviour (by sorting routes by AS path before
iterating over them), and documentation for network administrators “strongly recom-
mends” this option [GS02], but it is disabled by default to preserve backward com-
patibility with networks that were designed with the buggy functionality. (Juniper’s
implementation of BGP even has a “cisco-non-deterministic” option [Jun10b] to en-
able this behaviour, for compatibility.) It is unclear whether the Cisco developers were
aware of this problem when first implementing BGP – the deterministic-med com-
mand was not present in early versions, suggesting it was not seen as a problem in
need of fixing, but it has been anecdotally claimed [Whe03, MG06] that the incorrect
MED handling was an intentional divergence from the RFC to ignore all but the most
stable routes and prevent rapidly-changing MED values from overloading routers.

In any case, the MED attribute introduces a disproportionate amount of complexity
into the analysis and safe use of BGP. It is an important example of the two approaches
to understanding routing protocols that this dissertation makes use of. The BGP RFC
glosses over all these complexities of MED, simply describing the mechanical process-
ing of the attribute and leaving the analysis of its behaviour and its implementation
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difficulties and the necessary guidelines for safe usage as a task for later work (by RFC
writers, academics, implementers, or network administrators). In contrast, algebraic
routing demands that these problems are confronted in advance: before a feature like
MED could be included in a routing algebra, it must be understood well enough to
prove its usage is safe, and hence not included if it is impossible to prove it is safe.
Whether this is an advantage or disadvantage depends on one’s point of view: tradi-
tional protocol design has been willing to compromise safety for functionality, whereas
metarouting aims to improve on the state of the art by viewing safety as fundamental
and inviolable at the expense of some flexibility. A goal of this dissertation is to help
reconcile these models by demonstrating that important functionality can be included
without sacrificing safety.

Communities

BGP is designed to be extensible, and many extensions have been designed and im-
plemented. One of the most important is the communities attribute [CTL96]. This is
an optional attribute that is added to the route metric, containing an unordered list
of community values. A community value is a pair of 16-bit integers: the first is an
AS number, and the second is a value whose meaning is defined by the administrator
of that AS. This numbering system is designed to provide globally unique identifiers
without a centralised registry.

The BGP decision process is not affected directly by communities, but policies can
identify routes containing particular communities and then update other attributes.
For example, the administrator of AS 100 might set up its policy configuration so that
if it receives a route with community value (100, 10150) then it will set LOCAL PREF

to 150, and a route with (100, 10160) will have LOCAL PREF set to 160. AS 200 might
then choose to set up policy so that router a (from Figure 2.6) adds (100, 10150) to
the community attribute of routes that it is advertising to AS 100, while router b adds
(100, 10160) instead. This gives AS 200 some power to influence the decision process
inside AS 100 (in this case making routes through b preferred over any routes through
a, similar to use of MED but without the associated problems) while letting AS 100
keep ultimate control over how it interprets those community values.

Donnet and Bonaventure [DB08] found around 7000 distinct community values used
by around 1000 distinct ASes in published routing table dumps from 2007. They also
provide a taxonomy of publicly-documented community values. Although commu-
nities may be interpreted in arbitrary ways by routing policy, the vast majority fall
into a small number of classes: setting LOCAL PREF; tagging where a route has been re-
ceived from (geographic location, AS number, etc.); controlling whether a route should
be advertised onwards to particular groups of routers (identified by geographic loca-
tion, AS number, etc.); and controlling AS path prepending (the AS that receives the
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route will prepend its AS number more than once onto the AS PATH attribute, making
the path longer (less preferred) without affecting the cycle-detection behaviour of the
attribute).

2.4 Protocol implementations

There are several major implementations of the RIP and BGP routing protocols. We
will explore some of their details later, to help with reconciling the theoretical and
practical perspectives on routing. This section gives a brief overview to put them into
context, and describes some details of the Quagga implementation that we build our
metarouting prototype system on top of.

Much of the routing market has been dominated by Cisco. Most of their routers run
the Cisco IOS software, which implements many routing protocols (including RIP and
BGP) along with a great deal of other functionality. IOS was originally designed as
an embedded system in the 1980s, running in a single address space with no memory
protection and with a non-preemptive scheduler [BWM08]. The software architecture
has been improved incrementally over time [Cis06], but without changing the basic
kernel design. Backward compatibility has been an important part of the evolution
of IOS: router configuration files written for early versions are supported by new ver-
sions of IOS and have the same semantics, as far as possible, even when this results in
sub-optimal behaviour (such as the “bgp deterministic-med” command mentioned
earlier, which is strongly recommended but still not enabled by default).

More recently, higher-end products run Cisco IOS XR, a redesigned and largely rewritten-
from-scratch alternative to IOS based on a real-time operating system microkernel
(QNX) with more modern features allowing improved reliability. The development
of IOS XR also provided an opportunity to break backward compatibility: the config-
uration file syntax remained broadly similar but changed in a number of details (for
example the deterministic-med mode was made the default and the option was re-
moved, and the language for writing routing policy was completely changed).

The second major commercial router vendor is Juniper. Their software, JunOS, is
based on the FreeBSD operating system and has a modular architecture that is closer to
IOS XR than to IOS [Ker08]. Its configuration file syntax is superficially very different
to Cisco’s and has a more uniform structure, though it exposes similar functionality.

While the commercial routers provide custom hardware for their software, there are
also a number of open source software routers that work on standard PC hardware
running (typically) Linux or BSDs, making them much more useful for research and
for low-cost deployments. Quagga is one of the more widely used implementations; it
is hard to measure usage with any reliability, but an incident that caused most Internet-
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connected Quagga routers to simultaneously die4 caused about 2500 destination ad-
dress prefixes (roughly 1% of the global total) to vanish [Zmi09], indicating that it has
a small but non-negligible usage share. Quagga’s configuration file syntax is based
heavily on Cisco IOS, though the implementation is very different.

Quagga has a modular architecture, with each routing protocol (BGP, RIP, OSPF, etc.)
running as a daemon in a separate Unix process. Another process, named “zebra”, pro-
vides an interface between the routing protocol daemons and the operating system’s
forwarding tables, and between daemons that need to communicate with each other.
All communication between processes is performed with sockets (either local Unix
sockets if the processes are running on the same machine, or TCP sockets if they are
spread over multiple machines). There is also a shared library of common function-
ality (configuration parsing code, hash tables, prefix lists, etc.) that all the processes
can use. Quagga is written in C. The coding style avoids complex abstractions, so the
protocol implementations can be verbose and contain a lot of boilerplate code but are
fairly straightforward to understand and to modify.

XORP [HKG+05] is a more recent open source routing implementation, with a very
different approach to Quagga. XORP breaks down the protocols into smaller modules,
with the aim of providing extensibility to support protocol research. It is written in C++
with some complex abstractions (including dynamically-modifiable pipelines, event-
driven interfaces, and a custom extensible IPC mechanism) and well over twice as
many lines of code as Quagga for similar functionality. Its configuration syntax is
based roughly on Juniper’s.

4 Its handling of 32-bit AS numbers (mentioned in an earlier footnote) was buggy – the code was not
compatible with numbers longer than 5 digits. The bug was ironically triggered by a network starting
to use 32-bit AS numbers in an attempt to demonstrate that they were safe to use.
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Language definitions

As introduced in Section 1.2 the metarouting system defines two programming lan-
guages, named RAML and ERL, to compile a high-level routing algebra specification
into executable code that can run in the Quagga routing software. This chapter presents
a detailed description of the semantics of the RAML and ERL languages, along with
some illustrative examples. The full extent of the complete languages is growing over
time and is beyond the scope of this work, so we focus on a subset: in particular we
use RAML primarily to express algebras that are order transforms (whereas a complete
version should support others such as bisemigroups), and only include the RAML and
ERL expressions that are needed for the examples in this dissertation. However, we
go into this subset in depth and fill out many of the details necessary for a practical
implementation.

Metarouting is fundamentally a constructive system, and the languages reflect this.
Their syntaxes encode tree structures with leaf nodes being pre-defined base expres-
sions or identifiers and with non-leaf nodes being pre-defined constructor expressions.
The semantics of any expression is determined by that expression plus the semantics
of its sub-expressions.

The origin of RAML is the paper by Griffin and Sobrinho [GS05] introducing the goal
of defining a common language capable of expressing a large range of useful routing
algebras, from which the algebraic properties can be automatically derived in order
to check correctness conditions. It suggests a number of base algebras (integer plus,
integer min, lists of integers with prepending, etc.) and constructors (lexicographic
product, scoped product, disjoint union) that this language should include, to model
protocols similar to BGP. Gurney and Griffin [GG07] examine the lexicographic prod-
uct constructor in more detail and show that the scoped product is made redundant
by it, along with adding ‘left’ and ‘right’ constructors to support this use. Minimal
sets have been added to model equal-cost multipath routing [GG08], and the addition
of semi-module algebras and associated constructors has been proposed for modelling
route redistribution and the distinction between routing and forwarding [BG09].

45
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In this way, the design of RAML has been driven forwards by the desire to understand
and implement the behaviour of current routing practices, rather than by an attempt
to comprehensively implement algebras suggested by literature in other fields (such
as the examples of Gondran and Minoux [GM08]); network routing is the focus of this
language design, and algebras are a means to that end. In parallel with this drive for
routing expressivity, the language design is restricted by the need to reason about the
properties required by the algebras. Adding a new constructor to the language re-
quires inference rules for its properties, and those rules may rely on new properties
that must then be computed for every other constructor and base algebra in the lan-
guage. These two forces require careful balance: the hope is that we can add enough
expressivity to the language to be useful, while allowing it to be understood with a
set of properties that remains finite. The most extensive work on this problem is by
Naudžiūnas [Nau11], using Coq to help derive properties and rules for a large subset
of the language, but it is not yet entirely clear whether this approach will continue to
be successful or will hit intractable problems as we further increase expressivity. In
this dissertation we focus on parts of the language that we believe satisfy this balance,
but the evolution of the language is a complex and critical part of ongoing research.

Billings [Bil09] gives the first detailed description of an implementable version of the
RAML language, and introduces the ERL language as an important part of the im-
plementation. While it provides a good overview of the languages, that description
has a few shortcomings. Foremost, it defines the algebraic semantics of ERL but not
of RAML. To determine the algebraic properties of a RAML specification, it requires
that the RAML syntax be translated into ERL syntax, then the ERL syntax translated
into its algebraic semantics, and then the properties found by looking up the algebra
in a table of algebras and properties. Both translations are well defined, but the final
lookup is relying on complex pattern-matching and can provide no guarantee that the
patterns cover all algebras derived from RAML specifications. (The patterns certainly
cannot cover all ERL specifications, as ERL can express algebras whose properties can-
not be determined – only RAML (which is less expressive) is designed to support full
property inference.)

Further, this approach of translating to ERL before determining algebraic properties
does not match our real implementation of the languages, and would introduce extra
complexity into an implementation. For example, error messages triggered by incor-
rect algebraic properties would have to be translated from the ERL layer back into the
RAML layer before being displayed to the user; it would be simpler and more reliable
to generate them from the RAML directly.

Additionally, its definition includes non-primitive algebraic structures (bisemigroups,
order transforms, etc.) as core parts of the ERL language. In this dissertation we will
use a variety of larger structures (e.g. Chapter 5 splits policy labels into many separate
types) and it is inconvenient to have to extend the definition of ERL for every one of
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these.

Given the importance of RAML and ERL as foundational components of the meta-
routing system, and as a base that will be extended later in this dissertation, we use
this chapter to redefine them without those shortcomings. As illustrated earlier in Fig-
ure 1.4, we can translate RAML syntax directly into its algebraic semantics (including
algebraic properties) without going through ERL. This ensures the completeness of
property inference and matches the real implementation. Our model of ERL no longer
includes complex structures such as order transforms; instead it supports an arbitrary
named collection of primitive structures (types, preorders, transforms, etc.). RAML
still understands order transforms (as its property inference rules are defined in terms
of those structures) but they are flattened into two types plus a preorder plus a trans-
form during the translation to ERL. This allows us to reuse ERL for more complex
structures without any changes to ERL itself.

This chapter’s definition of ERL’s syntax and semantics matches the current imple-
mentation of the ERL-to-C++ compiler, named mrc. The implementation of RAML is
in flux at the time of writing, so the syntax described here is somewhat hypothetical
in its details but matches the implementation effort in its architecture and its concepts.
The design and implementation of ERL has been largely driven by John Billings, and
RAML has been developed by various members of the metarouting group; the new
contribution of this dissertation is the concrete syntax for ERL and the first accurate
definition of the languages, and of their relationships with each other and with the
routing algebras.

3.1 Introduction to ERL

ERL is the intermediate language used for declaratively encoding the data types and
computational behaviour of a routing language. It is designed to be expressive enough
for a wide range of routing languages, while still providing safety guarantees (e.g.
not supporting computations that might hang or crash) and being feasible to analyse
algebraically (so the correctness of a RAML-to-ERL compiler can be robustly verified).

3.1.1 Semantic domain

The semantic interpretation of an ERL program is a collection of named expressions,
each of one of the following kinds:

• Types: sets of values.

• Preorders: relations over values of a given type, with reflexivity and transitivity.
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• Semigroups: binary operators over values of a given type (returning a value of
the same type), with associativity.

• Constants: values of a given type.

• Transforms: total functions that take a non-zero number of arguments of given
types, and return a value of another given type.

For example, an ERL program to implement a simple shortest-paths routing language
with ‘infinity’ values could have the following algebraic semantics:

sig = {ω} ∪N

lbl = {ω} ∪N

ord = (sig, �) where u � v⇔ v = ω ∨ (u 6= ω ∧ v 6= ω ∧ u ≤ v)

tfm = λls.

{
ω if l = ω or s = ω

l + s otherwise

where sig and lbl are types (non-negative integers plus the special value identified by
“ω”); ord is a preorder over the type sig (any integer is less preferred than ω; otherwise
integers are compared with≤); and tfm is a transform with two arguments of types lbl
and sig respectively, returning a value of type sig. (We use the standard lambda cal-
culus syntax λa1a2.e to represent functions with (in this case) two arguments, usually
with implicit types.)

3.1.2 Syntax

The grammar of ERL is defined in Figures 3.1, 3.2 and 3.3. As ERL is primarily an
intermediate language, the syntax is simple and verbose with type annotations for
every sub-expression, to allow straightforward parsing. In the grammar we write “x,
x, . . . ” as a shortcut for expressing a list of zero or more occurrences of x. The next
section will introduce this syntax more gradually by example.

For convenience we also allow any expression to be the name of an earlier let state-
ment of the same kind; these references are immediately expanded and replaced by
the referenced expression during the parsing process, and have no further effect on
the behaviour of the compilation process, so we omit this detail from the definition of
syntax for simplicity.

3.1.3 ERL by example

As an example of this syntax, the shortest-paths ERL program introduced in Section 3.1.1
could be expressed as in Figure 3.4.
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erl-ty-unit ::= TyUnit

erl-ty-bool ::= TyBool

erl-ty-int-unbounded ::= TyInt

| TyIntNonNeg

| TyIntPos

erl-ty-int ::= erl-ty-int-unbounded
| TyIntRange(num, num)

erl-ty-string ::= TyString

erl-ty-addconst ::= TyAddConst(name, erl-ty)
erl-ty-list ::= TyList(erl-ty)

| TyListSimp(erl-ty)
erl-ty-set ::= TySet(erl-ty)

| TySetMin(erl-ty, erl-po)
erl-ty-record ::= TyRecord(name=erl-ty, name=erl-ty, . . .)
erl-ty-union ::= TyUnion(name=erl-ty, name=erl-ty, . . .)

erl-ty ::= erl-ty-unit
| erl-ty-bool
| erl-ty-int
| erl-ty-string
| erl-ty-addconst
| erl-ty-list
| erl-ty-set
| erl-ty-record
| erl-ty-union

Figure 3.1: Grammar for ERL types.

erl-po ::= PoIntLte : erl-ty-int
| PoListLenLte : erl-ty-list
| PoAddTop(erl-po) : erl-ty-addconst
| PoAddBot(erl-po) : erl-ty-addconst
| PoDual(erl-po) : erl-ty
| PoEquiv : erl-ty
| PoIncomp : erl-ty
| PoRecord(name=erl-po, name=erl-po, . . .) : erl-ty-record
| PoRecordLex(name=erl-po, name=erl-po, . . .) : erl-ty-record
| PoUnion(name=erl-po, name=erl-po, . . .) : erl-ty-union
| PoUnionOrdered(name=erl-po, name=erl-po, . . .) : erl-ty-union

Figure 3.2: Grammar for ERL preorders.
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erl-sg ::= SgIntPlus : erl-ty-int-unbounded
| SgIntRangePlus : TyAddConst(name, TyIntRange(num, num))

| SgIntMin : erl-ty-int
| SgIntMax : erl-ty-int
| SgAddAlpha(erl-sg) : erl-ty-addconst
| SgAddOmega(erl-sg) : erl-ty-addconst
| SgLeft : erl-ty
| SgRight : erl-ty

erl-binop ::= BoListCons

| BoSemigroup(erl-sg)

erl-expr ::= name
| ExprUnit : erl-ty-unit
| ExprInt(num) : erl-ty-int
| ExprString("str") : erl-ty-string
| ExprList(erl-expr, erl-expr, . . .) : erl-ty-list
| ExprSet(erl-expr, erl-expr, . . .) : erl-ty-set
| ExprBinop(erl-binop, erl-expr, erl-expr) : erl-ty
| ExprApply(erl-transform, erl-expr, erl-expr, . . .) : erl-ty
| ExprCond(erl-expr, erl-expr, erl-expr) : erl-ty
| ExprRecord(name=erl-expr, name=erl-expr, . . .) : erl-ty-record
| ExprSelect(erl-expr, name) : erl-ty
| ExprConstCase(erl-expr, name, erl-expr, erl-expr) : erl-ty
| ExprInject(name, erl-expr) : erl-ty-union
| ExprSwitch(erl-expr, name=erl-transform, name=erl-transform, . . .) : erl-ty

erl-transform ::= fun (name:erl-ty name:erl-ty . . .) -> erl-expr

erl-statement ::= let type name = erl-ty
| let preorder name = erl-po
| let semigroup name = erl-sg
| let constant name = erl-expr
| let transform name = erl-transform

erl-program ::= erl-statement
| erl-statement erl-program

Figure 3.3: Grammar for ERL semigroups, transforms and programs.
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let type sig = TyAddConst(W, TyIntNonNeg)

let type lbl = TyAddConst(W, TyIntNonNeg)

let preorder ord =

PoAddTop(PoIntLte : TyIntNonNeg) : TyAddConst(W, TyIntNonNeg)

let transform tfm =

fun (l:TyAddConst(W, TyIntNonNeg) s:TyAddConst(W, TyIntNonNeg))

-> ExprBinop(

BoSemigroup(

SgAddOmega(SgIntPlus : TyIntNonNeg) : TyAddConst(W, TyIntNonNeg)

), l, s

) : TyAddConst(W, TyIntNonNeg)

Figure 3.4: Shortest-paths routing language expressed in ERL.

The simplest class of expressions in ERL is types. The first two statements in this
example declare types named sig and lbl. The semantics of an ERL type expression
is a set of values, for example the semantics of “TyIntNonNeg” is the set of all non-
negative integers, N. Some types are parametric: the semantics of “TyIntRange(0,
15)” is the set of integers in the range [0, 15]. We will express the semantics of ERL
syntax with the J. . .K operator:

JTyIntNonNegK = N

JTyIntRange(n, m)K = {i ∈ Z | n ≤ i ≤ m}

Some types are constructed from other types: “TyAddConst(W, TyIntNonNeg)” is the
set N plus the constant identifier W. In general:

JTyAddConst(c, t)K = {c} ∪ JtK

These constant identifiers can be arbitrary uppercase strings. (We use case to distin-
guish constants from references to expressions named by let, which must be lower-
case.) The same string can be used for multiple identifiers when they are unambiguous;
it is fine to use the string W to represent an infinity for many different types in the same
ERL program, since the context can resolve any ambiguity. In this example, we use it
to represent the infinity values for both sig and lbl.

Other ERL types listed in the earlier syntax include strings (opaque sequences of ASCII
characters), lists (whose elements are all of the same type), simple lists (lists where no
two elements are equal to each other), sets, and minimal sets (which have a type and a
preorder, and enforce the condition that no element in the set is strictly greater (by that
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preorder) than any other element). TyUnit is the unit type, {1}, which can take only a
single value; it cannot carry any data by itself but is useful in special cases. Record and
union types are discussed later.

ERL preorder expressions define relations over a type. Every expression is of the
form “p : t”, for example “PoIntLte : TyIntNonNeg” defines the integer-less-than-
or-equal order over N.

There are restrictions on t for each preorder expression: PoIntLte can be applied to any
integer type (TyIntRange, TyInt, TyIntPos, TyIntNonNeg), but using it over any other
type is an error. Similarly, PoAddTop requires a type of the form TyAddConst(c, t′), and
has the semantics that every value in t′ is lower than the value c.

The example program uses “PoIntLte : TyIntNonNeg” as a sub-expression inside the
PoAddTop constructor, with the resulting type TyAddConst(W, TyIntNonNeg). We de-
fine the semantics as

JPoIntLte : TyIntNonNegK = ≤
JPoAddTop(p:t) : TyAddConst(c, t)K = � where s1 � s2 ⇔

s2 = c ∨ (s1 6= c ∧ s2 6= c ∧ s1 JpK s2)

The definition of PoAddTop says that any value is less than or equal to c; otherwise, if
neither value is c (and therefore must be in t) it defers to the preorder on type t defined
by p.

PoAddBot acts similarly, adding a value that is more preferred than any value in t.
PoEquiv gives the trivial order in which every element is equivalent (s1 � s2 for all
s1, s2). PoIncomp gives the trivial order in which every element is incomparable (s1 �
s2 ⇔ s1 = s2). PoDual reverses an order:

JPoDual(p:t) : t)K = � where s1 � s2 ⇔ s2 JpK s1

Semigroup expressions work similarly to preorders, defining a binary operator over
a type. In the example, “SgIntPlus : TyIntNonNeg” defines the semigroup (N, +).
SgAddOmega is analogous to PoAddTop, creating a semigroup where the constant value c
acts as an annihilator (c⊗ s = s⊗ c = c for all s). SgAddAlpha makes c act as an identity
(c⊗ s = s⊗ c = s for all s).

SgIntPlus can only be applied to unbounded integer types. Bounded integers require
a way to handle results that are outside the bounds, so we define a special semigroup
SgIntRangePlus which applies to types TyAddConst(c, TyIntRange(n, m)) and will
return the value c if the result would overflow. This lets ERL avoid any kind of run-
time exception handling, as the language definition ensures at compile-time that any
expression with any arguments will produce a valid result. An alternative semigroup
could simply clamp the result to the valid range, but we have found that returning
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a special constant is more useful in practice and have not added the clamped-plus
semigroup to this version of ERL.

SgIntMin and SgIntMax return integer minimum/maximum values. SgLeft and SgRight

always select one of their arguments:

JSgLeftK = ⊗ where s1 ⊗ s2 = s1

JSgRightK = ⊗ where s1 ⊗ s2 = s2

The most complex class in ERL is transform expressions, which represent computa-
tions in a specialised functional language. The example defines tfm as a function of two
arguments, l and s, each of type TyAddConst(W, TyIntNonNeg). The function’s return
value in this case is computed by ExprBinopwhich applies a binary operator to two val-
ues (here the two function arguments l, s) and returns a value of type TyAddConst(W,

TyIntNonNeg). Semigroups are a special case of binary operators in which the two ar-
guments and the return value are all of the same type, so we can put the SgAddOmega

semigroup inside the ExprBinop. (ERL handles semigroups as a special case to better
match the definition of RAML, in which semigroups are important due to supporting
algebraic properties that would not apply to more general binary operators.)

The core of the example’s transform is the SgAddOmega and SgIntPlus, which mean it
will add its arguments as integers and treat the W constant as an infinity, matching the
algebraic expression from Section 3.1.1. The rest of the ERL transform syntax is just
setting up the types.

Expressions such as ExprInt(10) are simply a constant value. Expressions of the form
name (in this example the “l” and “s” in the ExprBinop) refer to arguments of funs,
with standard rules of lexical scoping. ExprApply takes a fun and applies a list of
expressions as arguments; in principle this is equivalent to the fun’s expression where
any name argument references are replaced by the corresponding argument expression
of the ExprApply – that is, ExprApply(fun (x) -> e1(x), e2) is equivalent to e1(e2)

– so it adds no expressive power to the language, but it simplifies the specification
of programs based on nested transforms and allows common subexpressions to be
factored out.

3.1.4 Compound types

The most complex types are TyRecord and TyUnion, which contain a set of any number
of name/type pairs. For example, the ERL code in Figure 3.5 defines a record type sig

with three fields. A value of this type is a tuple with three elements. An important
subtlety of the language’s design is that the order of field definitions is irrelevant; the
type is equal to the one specified as sigcanonical.
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let type sig =

TyRecord(

dist = TyAddConst(W, TyIntNonNeg),

bw = TyIntNonNeg,

path = TyListSimp(TyInt)

)

let type sigcanonical =

TyRecord(

bw = TyIntNonNeg,

dist = TyAddConst(W, TyIntNonNeg),

path = TyListSimp(TyInt)

)

Figure 3.5: ERL record type, and equivalent type with canonical field order.

We define the canonical form of a record or union type as the form in which the fields
are sorted alphabetically by name. (Duplicate field names are forbidden, so there is
always a single canonical form.) The type definitions, and most constructors over com-
pound types – PoRecord, PoUnion, SgRecord, SgUnion, ExprRecord, ExprSwitch – are
converted to canonical form after being parsed.

One exception is PoRecordLex, in which the field sequence is critical: it defines a lexico-
graphic order over the fields, so the first field specified in the syntax takes precedence
over the second and so on. For example, given the type

TyRecord(a=TyInt, b=TyIntPos),

the preorders

PoRecordLex(a = PoIntLte:TyInt, b = PoIntLte:TyIntPos)

PoRecordLex(b = PoIntLte:TyIntPos, a = PoIntLte:TyInt)

implement the left- and right-lexicographic orders respectively over the same type. If
we did not have the canonicalisation of types then these orders would be over incom-
patible types, restricting the flexibility of the language.

Figure 3.6 illustrates the result of parsing the following example:

let preorder ord =

PoRecordLex(

dist = PoAddTop(PoIntLte : TyIntNonNeg) : TyAddConst(W, TyIntNonNeg),

bw = PoDual(PoIntLte : TyIntNonNeg) : TyIntNonNeg,

path = PoListLenLte : TyListSimp(TyInt)

) : sig

where sig is the same type defined earlier. (path is omitted from the diagram to save
space.) There are effectively two parallel parse trees: one for the preorder and one for
its type, with each preorder node corresponding to a subtree of the type parse tree.
The child nodes of TyRecord are labelled with field names but are unordered, whereas



CHAPTER 3. LANGUAGE DEFINITIONS 55

PoRecordLex

PoDual

PoIntLte

PoAddTop

PoIntLte

2:
bw

1: dist

TyRecord

TyIntNonNeg

TyAddConst

TyIntNonNeg

bw

dist

Figure 3.6: Linked parse trees of preorder and type.

the child nodes of PoRecordLex are annotated with their order in the lexicographic
comparison. PoDual has the same type as the preorder it is applied to, so it shares the
PoIntLte’s type node.

The other compound type is TyUnion which represents a disjoint union type, such as:

let type sig =

TyUnion(

external = TyInt,

internal = TyIntRange(0, 15)

)

let constant c1 = ExprInject(external, ExprInt(100):TyInt):sig

let constant c2 = ExprInject(internal, ExprInt(10):TyIntRange(0, 15)):sig

Values of this type are tagged as either external or internal; the ExprInject expres-
sion represents a value that has been injected into one of the tagged sets of a union
type.

The algebraic semantics of a record type is simply the product of its field types:

JTyRecord(n1=t1, n2=t2, . . . )K = Jt1K× Jt2K× . . .

where the TyRecord is assumed to be in canonical form. Values of this type are tuples,
containing one value for each of the record’s fields. The semantics of a union type is
similarly the disjoint union of its field types.
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Note that this throws away the field names entirely – they are not part of the routing
algebra that the specification represents. However, they are important for the practical
implementation of the routing algebra: users of the protocol need meaningful names
to refer to the various fields. When we describe an approach to router configuration
languages in Chapter 4 we use the ERL field names as part of the command-line user
interface, but they have no effect on the fundamental behaviour of the routing lan-
guage so we do not need them in the algebra.

The full syntax and algebraic semantics of ERL are defined in Appendix A. In addition
to the features introduced in the previous section, it includes string, list, set and min-set
types, along with a range of other preorders, semigroups and transforms.

3.2 RAML

Whereas ERL is a fairly low-level language with verbose syntax and explicit types,
and consists of individual semigroups and preorders and transforms, RAML is based
around higher-level algebraic structures. The semantic domain of this version of RAML
is the order transform algebras:

(S, L, �, B).

(A more general version of RAML supports algebras from the other quadrants dis-
cussed in Chapter 2, but they are not necessary for the focus of this dissertation. The
definition of RAML in this chapter should be seen as a subset of the ‘real’ RAML; the
full language design is ongoing work and not covered here, but this subset covers the
important concepts and features that are necessary for an understanding of the full
system.)

The semantics of a RAML expression also includes a set of algebraic properties: whether
it is increasing or not; whether it is distributive or not; whether it has an infinity metric
and, if so, the value of that infinity; whether it has an identity label and, if so, its value;
and many other properties that are either desired by the routing algorithms, or are nec-
essary for the property inference rules. Every pre-defined base expression in RAML is
associated with a known set of properties, and every constructor expression has infer-
ence rules to compute its properties based on the properties of its sub-expressions.

The example from Section 3.1.1 can be expressed as the algebra

(N∞, N∞, ≤, +)

where “≤” and “+” treat the value ∞ in the standard numeric way, corresponding to
the ω or W in the ERL examples. This is the basic shortest paths algebra, sp, for which
various algebraic properties are easily discovered: it is increasing and distributive,
with infinity metric ∞ and identity label 0.
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raml-base ::= int min plus(erl-ty-int-unbounded)
| int range min plus(num, num)
| int max min(erl-ty-int)
| paths(erl-ty)
| strata(num, num, num. . .)

raml-exp ::= raml-base
| add top(name, raml-exp)
| lex product(name=raml-exp, name=raml-exp, . . .)
| function union(name=raml-exp, name=raml-exp, . . .)
| right(raml-exp)
| left(raml-exp)

Figure 3.7: RAML grammar.

The syntax of RAML is defined by the grammar in Figure 3.7. Note that we reuse
ERL’s syntax for types (erl-ty etc.) – we could provide a more self-contained definition
of RAML by duplicating the relevant type specifications, but we choose to avoid that
redundancy here. We distinguish RAML and ERL syntax by writing keywords with
CamelCaseCapitalisation for ERL and underscore separated words for RAML, to
reduce confusion when mixing the two.

We will express the algebraic semantics of a RAML expression as

Jint min plus(TyInt)K = ((Z, Z, ≤, +),
{INCR = ⊥, DIST = >, TOP = ⊥, BOT = ⊥})

Jint min plus(TyIntNonNeg)K = ((N, N, ≤, +),
{INCR = >, DIST = >, TOP = ⊥, BOT = 0})

Jint min plus(TyIntPos)K = ((N+, N+, ≤, +),
{INCR = >, DIST = >, TOP = ⊥, BOT = 1})

including the algebra and the associated set of properties. In this case we must handle
each possible argument type explicitly as the properties differ for each type. The prop-
erties INCR (increasing) and DIST (distributive) can be in one of three states: true (>),
false (⊥), or unknown (omitted from the properties set entirely; ideally the language
will be designed to ensure no properties will ever be unknown, but at the current stage
of development this is not guaranteed). The TOP property is an element that is a top
of the preorder (or ⊥ if there is known to be no such element, or omitted if unknown).
In general terms this element is a witness to a separate property such as HAS TOP (i.e. a
value which demonstrates the truth of that property), and many other properties will
also have witnesses (e.g. a pair (l, s) that demonstrates a violation of INCR). We will ig-
nore most witnesses since they are not relevant when compiling to ERL, but we make
the values TOP and BOT explicit as some routing algorithms will require a compiled
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ERL representation of them. Many other properties are important for the complete-
ness of RAML, but are omitted here for simplicity.

paths implements the path algebra described in Section 2.2.6 over some arbitrary iden-
tifier type, with the semantics

Jpaths(t)K = ((JtK∗simp ∪ {∞}, JtK× JtK, �listLen, Bpaths),

{INCR = >, DIST = ⊥, TOP = ∞, BOT = []})

where �listLen and Bpaths are as defined before.

strata is a generalisation of the customer–provider–peer algebra also described in Sec-
tion 2.2.6, named for its association with the Stratified Shortest-Paths Problem [Gri10].
We take the first argument as the number of metric values, the second as the number
of label values, and the remaining arguments as the contents of the matrix defining B.
For example, cpp was defined with the matrix

Bcpp C R P ∞
c C ∞ ∞ ∞
r R ∞ ∞ ∞
p P P P ∞

and would be expressed in RAML as

strata(4, 3,

0, 3, 3, 3,

1, 3, 3, 3,

2, 2, 2, 3)

with the metrics and labels being mapped onto integers. (This can be made more user-
friendly in practice by supporting enumeration types in ERL and using meaningful
identifiers instead of numbers.) The algebra’s � is simply integer ≤. The algebraic
properties can be determined automatically from any matrix by enumerating all com-
binations to see what properties hold. The matrix for this cpp example can easily be
extended to support the full range of policy functions for strata explored previously
by Griffin [Gri10].

The semantics of a constructor expression raml-exp are defined in terms of the seman-
tics of the sub-expressions. For example, the two-argument lex product has the se-
mantics defined in Figure 3.8. lex products over more than two arguments are a nat-
ural extension of this.

The INCR and DIST properties depend in potentially complex ways on the properties
of Je1K and Je2K, as discussed elsewhere [GG07], but importantly they depend only on
those properties – there is no need for any deeper analysis of the sub-expressions to
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Jlex product(n1=e1, n2=e2)K = ((S1 × S2, L1 × L2, �1 ~× �2, B1 ×B2),
{INCR = . . . , DIST = . . . ,

TOP =

{
⊥ if t1 = ⊥∨ t2 = ⊥
(t1, t2) otherwise

,

BOT =

{
⊥ if b1 = ⊥∨ b2 = ⊥
(b1, b2) otherwise

})

where
Je1K = ((S1, L1,�1, B1), {TOP = t1, BOT = b1, . . .})
Je2K = ((S2, L2,�2, B2), {TOP = t2, BOT = b2, . . .})

Figure 3.8: Semantics of the lex product RAML expression.

Jadd top(c, e)K = (({c} ∪ S′, {c} ∪ L′, �, B),
{INCR = (i′ ∧ t′ = ⊥), DIST = d′, TOP = c, BOT = b′})

where
JeK = ((S′, L′, �′, B′),

{INCR = i′, DIST = d′, TOP = t′, BOT = b′)}
and

c B s = c
l B c = c
l B s = l B′ s for all s ∈ S′, l ∈ L′

and
c � s

s1 � s2 ⇔ s1 �′ s2 for all s, s1, s2 ∈ S′

Figure 3.9: Semantics of the add top RAML expression.

determine the properties of the lex product, allowing a straightforward constructive
approach to compiling and verifying RAML programs.

In RAML’s lex product we have the same field ordering issue as in ERL: the fields
must be shuffled into a canonical order for the types, but we should change ~× into ~×
so that it compares fields in the sequence specified by the syntax.

We can similarly define the semantics of add top, which adds new metric and label
values that act as the top element in the order and as an annihilator element in the
transform, as in Figure 3.9.

In parallel with the algebraic semantics, each RAML expression corresponds to a col-
lection of ERL expressions. This fully defines the behaviour of the RAML-to-ERL com-
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sig = TyAddConst(c, Le′Msig)
lbl = TyAddConst(c, Le′Mlbl)
ord = PoAddTop(Le′Mord)
tfm = fun (l s) ->

ExprConstCase(l, c, c, fun (l2) ->

ExprConstCase(s, c, c, fun (s2) ->

ExprApply(Le′Mtfm, l2, s2)))

Figure 3.10: ERL translation of RAML add top constructor.

piler. We express the ERL translation of a RAML expression e as LeM. As we are using
RAML to represent order transforms, the ERL collections always have a signature type
sig, label type lbl, order ord over signatures, and transform tfm. We use the notation
“LeMsig” to refer to the sig component of the ERL semantics LeM.

In principle, the algebraic semantics defined for RAML will be isomorphic to the se-
mantics defined for the ERL that is derived from the RAML. This is critical for the
correctness of the metarouting system: we cannot determine algebraic properties of
ERL expressions directly, but if we can prove algebraic properties based on RAML
expressions, and show that we extract the same routing algebra after compiling the
RAML to ERL, then the same algebraic properties will apply to the ERL code. With-
out this guarantee, bugs in the definition of the RAML-to-ERL compiler could easily
violate the correctness conditions that the algebraic properties are meant to ensure.

The desired equivalence between algebraic semantics of RAML and ERL is then

JeK = ((S, L, �, B), {. . .})
JLeMsigK = S
JLeMlblK = L
JLeMordK = �
JLeMtfmK = B

where J. . .K is overloaded to mean both “algebraic semantics of ERL expression” and
“algebraic semantics of RAML expression”.

For example, Ladd top(c, e′)M is the collection of ERL expressions in Figure 3.10. Ap-
plying the ERL algebraic semantics defined in Appendix A to these expressions, we
get the algebras in Figure 3.11. This can be compared against the algebraic semantics
we previously defined directly for the RAML expression add top: the order and trans-
form are written in slightly different but equivalent ways, confirming that the defined
semantics for RAML-to-ERL-to-algebra and RAML-to-algebra are compatible. A more
formal and comprehensive approach (not attempted here) should prove this equiva-
lence for every case, allowing the correctness of the whole RAML-to-ERL compiler to
be verified.
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JsigK = {c} ∪ JLe′MsigK

JlblK = {c} ∪ JLe′MlblK

JordK = � where s1 � s2 ⇔
s2 = c ∨ (s1 6= c ∧ s2 6= c ∧ s1 JLe′MordK s2)

JtfmK = λls.


c if l = c
c if s = c
JLe′MtfmK(l, s) otherwise

Figure 3.11: Algebraic semantics of ERL translation of RAML add top constructor.

Appendix B gives a definition of the algebraic and ERL semantics of all the RAML
expressions introduced in our RAML syntax.

3.3 Language examples

3.3.1 Distance-bandwidth

We start with a simple routing language expressed in RAML:

lex_product(

dist = add_top(W, int_min_plus(TyIntNonNeg)),

bw = int_max_min(TyIntNonNeg)

)

This is designed to implement the algebra

(N, N, ≥, min) ~×(N∞, N∞, ≤, +).

(Note that the algebra is based on the canonical ordering of the RAML record, where
bw comes before dist, with the right-lexicographic product ~×instead of the more com-
mon ~× so that dist takes precedence in the order.)

Based on Appendix B we can extract the algebraic semantics of the RAML expression,
which will give an equivalent algebra but with ∞ renamed to W and handled explicitly
by the orders and transforms.

Separately, we can extract an ERL specification from the RAML using the same table,
giving Figure 3.12. We can then use Appendix A to determine the algebraic semantics
of this ERL specification, presented in Figure 3.13 with some algebraic simplifications.
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lbl = TyRecord(dist=TyAddConst(W, TyIntNonNeg), bw=TyIntNonNeg)

sig = TyRecord(dist=TyAddConst(W, TyIntNonNeg), bw=TyIntNonNeg)

ord = PoRecordLex(dist=PoAddTop(PoIntLte), bw=PoDual(PoIntLte))

tfm = fun (l s) ->

ExprRecord(

dist = ExprApply(

fun (l1 s1) -> ExprBinop(BoSemigroup(SgAddOmega(SgIntPlus)), l1, s1),

ExprSelect(l, dist), ExprSelect(s, dist)),

bw = ExprApply(

fun (l2 s2) -> ExprBinop(BoSemigroup(SgIntMin), l2, s2),

ExprSelect(l, bw), ExprSelect(s, bw))

)

Figure 3.12: ERL code for distance-bandwidth example. (Type annotations are omitted
for clarity.)

sig = N× ({W} ∪N)

lbl = N× ({W} ∪N)

ord = (ub, ud) � (vb, vd)⇔
((vd = W∨ ud ≤ vd) ∧ ¬(ud = W∨ vd ≤ ud)) ∨
((vd = W∨ ud ≤ vd) ∧ (vb ≤ ub))

tfm = λ(lb, ld)(sb, sd).

lb min sb,


W if sd = W

W if ld = W

ld + sd otherwise




Figure 3.13: Algeraic semantics of ERL code for distance-bandwidth example.

The design of RAML and ERL should ensure the routing algebra (sig, lbl, ord, tfm)
is isomorphic to the (S, L, �, B) algebra that was extracted directly from the RAML.

3.3.2 Compiling to C++

The ERL specification defines an executable program; an interpreter that implements
all the types and expressions could easily perform the routing language’s computa-
tions. For optimal performance, we instead compile ERL into C++ code to perform the
same computations.

The details of the compiler are discussed by Billings [Bil09]. Here we will briefly
demonstrate its output for this example, to help explain the full behaviour of the com-
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pilation process.

The following listing gives the generated C++ code, with some comments inserted
manually. The code is fairly opaque and not intended to be especially human-readable,
but some details can be highlighted. One important point to note is that no functions
are generated for e.g. printing metric values or marshalling (encoding to a sequence of
bytes): the output is purely declarative, using C++’s template system to define a type
sig that encodes the metric structure. It therefore has a close structural correspondence
to the ERL code we extract from the RAML specification, though with more convoluted
syntax.

One of the more complex correspondences between ERL and C++ is record types.
C++ templates cannot easily handle variable numbers of parameters, so records are
implemented with a RecCons cell per field: each is of the form RecCons<name, type,
rest> where rest is either another RecCons or (for the final field) RecEnd. The outermost
RecCons is then wrapped in a RecWrap type due to some implementation details.

The C++ template system is effectively a Turing-complete functional programming
language (albeit with severe implementation restrictions) that is executed at compile-
time to hook together pieces of run-time-executable C++ code. In our case, the C++
compiler handles the job of combining the type declarations with a library of generic
printing/marshalling/etc. code to produce a very efficient implementation of all the
necessary functionality. This library, named libmrc, defines the C++ types AddConst,
IntBigNonNeg and so on.

As a very brief summary of important C++ syntax: “typedef Foo ty0” binds the ex-
isting type Foo to the new type name ty0. The type “Foo<S, T>” is the generic tem-
plated type Foo, instantiated with parameters that are the types S and T. For transform
expressions, “struct f { t operator()(...) { ... } }” defines a kind of function
(specifically a functor type) named f that returns a value of type t.

// String constants

std::string str_W("W");

std::string str_bw("bw");

std::string str_dist("dist");

// Define the ‘sig’ record type

typedef AddConst<IntBigNonNeg, str_W> ty0;

typedef RecCons<str_dist, ty0, RecLast> ty1;

typedef RecCons<str_bw, IntBigNonNeg, ty1> ty2;

typedef RecWrap<ty2> sig;

// Define ‘lbl’ which happens to share the type ‘sig’

typedef sig lbl;
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// Define nested transform functions for ‘tfm’

struct funct

{

ty0 operator()(ty0 l1, ty0 s1) const

{

// Apply the addition function to l1, s1

typedef AddConstOmega<IntBigNonNegPlus> ty4;

ty0 var7(ty4()(l1, s1));

return var7;

}

};

struct funct1

{

IntBigNonNeg operator()(IntBigNonNeg l2, IntBigNonNeg s2) const

{

// Apply the min function to l2, s2

IntBigNonNeg var17(IntBigNonNegMin()(l2, s2));

return var17;

}

};

struct tfm

{

sig operator()(lbl l, sig s) const

{

RecEnd var1;

// Add the ‘dist’ fields

typedef RecOpGet<1, ty0> ty5;

ty0 var3(ty5()(s));

ty0 var5(ty5()(l));

funct var10;

ty0 var2 = var10(var5, var3);

// Cons the result with RecEnd

typedef std::pair<ty0, RecEnd> ty6;

ty6 var11 = std::make_pair(var2, var1);

// Min the ‘bw’ fields

typedef RecOpGet<0, IntBigNonNeg> ty7;

IntBigNonNeg var13(ty7()(s));
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IntBigNonNeg var15(ty7()(l));

funct1 var20;

IntBigNonNeg var12 = var20(var15, var13);

// Cons the result with the previous RecCons

typedef std::pair<IntBigNonNeg, ty6> ty8;

ty8 var21 = std::make_pair(var12, var11);

// Construct and return the new metric record

sig var0(var21);

return var0;

}

};

// Define the ‘ord’ lexicographic-product preorder

typedef AddConstTop<IntBigLte> ty9;

typedef PolyDual<IntBigLte> ty10;

typedef RecOrdLexCons<0, IntBigNonNeg, ty10, RecOrdLast> ty11;

typedef RecOrdLexCons<1, ty0, ty9, ty11> ty12;

typedef RecOrdWrap<ty12> ord;

Despite the heavy use of C++ template types and functors, this can compile into effi-
cient machine code due to function inlining optimisations: if IntBigNonNeg is replaced
with bounded integers (as would be common in a routing language designed for prac-
tical usage) to avoid an algebraically correct but inevitably slower reliance on an exter-
nal arbitrary-size-integer package, then the GCC compiler with the -O2 optimisation
flag implements tfm::operator()(lbl l, sig s) in about 80 assembly instructions
on x86 (plus a bit more for internal error checking).

Given all these definitions, we can write a simple standalone C++ program to manip-
ulate metric and policy values, such as:

#include "dist_bw-generated-output.hpp"

int main()

{

sig m0 = sig(parse_sig("<dist=1, bw=1000>"));

std::cout << "Input metric: " << m0 << "\n";

lbl l0 = lbl(parse_sig("<dist=10, bw=500>"));

sig m1 = tfm()(l0, m0);

std::cout << "Output metric: " << m1 << "\n";

// prints the string "<dist=11, bw=500>"

}
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Region m Region n

i

j

External link:
inr(x, (m, n), v, l)

Internal link:
inl(⊥, ⊥, v, (i, j))

Figure 3.14: A network with link weights from the scoped product algebra.

Apart from the input strings describing the initial metric and label, this code is com-
pletely independent of the routing language that we specified: it simply relies on the
abstracted interface of sig, lbl and tfm generated by mrc (the ERL-to-C++ compiler).
This abstraction is the basis of how the metarouting toolkit separates the language im-
plementation and algorithm implementation. Instead of manually writing a C++ pro-
gram like this, the generated output is compiled against a standard gQuagga wrapper
program that exposes the routing language’s behaviour to the algorithm implementa-
tion.

3.3.3 Scoped product

As a more advanced example, we will demonstrate the metarouting system with an al-
gebra for the network in Figure 3.14. The goal is to implement a two-level partitioning
scheme within the routing language. (This contrasts to most current routing protocols
which make the levels an integral part of the algorithm, as with IBGP vs. EBGP – we
will gain flexibility (for example we could easily extend this to more than two lev-
els) but may lose the performance optimisations that are possible when the algorithm
knows more about the network structure.)

We use the RAML specification of Figure 3.15. cpp is a reference to the customer–
provider–peer instance of strata, abbreviated here for readability. The aim is that
internal links will be labelled with an internal distance and internal edge identifier (to
detect loops as with BGP’s AS paths, but inside the region instead of only outside). The
external customer–provider–peer commercial relationship and the external path will
not be modified at all while passing over internal links, so right is used. External links
will be labelled with customer–provider–peer and external edge identifier. External
links will also reset the two internal attributes to some default value, using left, so
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add_top(W,

function_union(

internal =

lex_product(

ecomm = right(cpp),

epath = right(paths(TyIntNonNeg)),

idist = int_min_plus(TyIntNonNeg),

ipath = paths(TyIntNonNeg)

),

external =

lex_product(

ecomm = cpp,

epath = paths(TyIntNonNeg),

idist = left(int_min_plus(TyIntNonNeg)),

ipath = left(paths(TyIntNonNeg))

)

)

Figure 3.15: Scoped product routing language specification.

that internal details will not leak out of a region.

Extracting the routing algebra (S, L, �, B) for this input is simply a matter of recur-
sively applying the semantic rules for Jraml-expK.

We find the metric type S is

({0, 1, 2, 3} × (N∗simp ∪ {ω})×N× (N∗simp ∪ {ω})) ∪ {ω}.

The order � is the lexicographic order on the metric components. The label type is a
disjoint union, being either a value

inl(1× 1×N× (N×N))

for internal links, or

inr({0, 1, 2} × (N×N)×N× (N∗simp ∪ {ω}))

for external links, or ω for unusable links.

B is determined as

ω B s = ω

l B ω = ω

inl(⊥, ⊥, v, (i, j)) B (ec, ep, id, ip) = (ec, ep, v + id, (i, j) Bpaths ip),
inr(x, (m, n), v, l) B (ec, ep, id, ip) = (x Bcpp ec, (m, n) Bpaths ep, v, l).
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(One minor bug in this definition is that loops in path attributes will result in metrics
such as (0, ω, 0, []), not quite the desired ω. We have not yet implemented a com-
plete solution for this, so we neglect it from this example. Section 8.1.2 discusses some
possible solutions in more detail.)

Compiling the RAML code ERL gives the metric type

sig =

TyAddConst(W,

TyRecord(

ecomm = TyIntRange(0, 3),

epath = TyAddConst(NOTSIMPLE, TyListSimp(TyIntNonNeg)),

idist = TyIntNonNeg,

ipath = TyAddConst(NOTSIMPLE, TyListSimp(TyIntNonNeg))

)

)

i.e. either the constant W or a record with four fields, where the path fields are simple
(duplicate-free) lists of integers or the constant NOTSIMPLE, and the other fields are just
integers. The order over the metric type is

ord =

PoAddTop(

PoRecordLex(

ecomm = PoIntLte,

epath = PoAddTop(PoListLenLte),

idist = PoIntLte,

ipath = PoAddTop(PoListLenLte)

)

)

so W is less preferred than any other value, and other values are compared with a lexi-
cographic product over the fields, with path fields being compared by length to prefer
shorter paths. The label type is

lbl =

TyAddConst(W,

TyUnion(

internal = TyRecord(

ecomm = TyUnit,

epath = TyUnit,

idist = TyIntNonNeg,

ipath = TyIntNonNeg

),
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external = TyRecord(

ecomm = TyIntRange(0, 2),

epath = TyIntNonNeg,

idist = TyIntNonNeg,

ipath = TyAddConst(NOTSIMPLE, TyListSimp(TyIntNonNeg))

)

)

)

using a union to distinguish between internal labels and external labels. Internal labels
do not specify a value for the external fields, so TyUnit is used; we could optimise
the ERL code by removing these fields entirely as they carry no data. Internal labels
specify a single integer for ipath which will be prepended to the metric’s path, whereas
external labels specify a whole list which will replace that path (due to the use of left
in the RAML).

The policy application function is the most complex expression:

tfm = fun (l s) ->

ExprConstCase(l, W, W, fun (l2) ->

ExprConstCase(s, W, W, fun (s2) ->

ExprApply(fun (l3 s3) ->

ExprSwitch(l3,

internal = fun (l4) -> ExprRecord(

ecomm = ExprSelect(s3, ecomm),

epath = ExprSelect(s3, epath),

idist = ExprBinop(BoSemigroup(SgIntPlus),

ExprSelect(l4, idist), ExprSelect(s3, idist)),

ipath = ExprBinop(BoListCons,

ExprSelect(l4, ipath), ExprSelect(s3, ipath))

),

external = fun (l4) -> ExprRecord(

ecomm = ...,

epath = ExprBinop(BoListCons,

ExprSelect(l4, epath), ExprSelect(s3, epath)),

idist = ExprSelect(l4, idist),

ipath = ExprSelect(l4, ipath)

)

), l2, s2

)

)

)

First, the ExprConstCase expressions return W if l or s are already W. Otherwise, their
values (now known not to be W) are bound to the names l3 and s3 and the main body of
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the transform is executed. The ExprSwitch checks whether the label is tagged as inter-
nal or external, then binds the label value (minus the tag) to l4. Finally the transform
returns the appropriate ExprRecord value, whose fields are calculated by selecting the
fields of the label l4 and the metric s3 and then either copying them into the record or
applying a binary operator to them.

(The implementation of Bcpp in the external ecomm field is omitted as we do not yet
have a concise way to define it in ERL.)



Chapter 4

Generalising vector protocols

In Chapter 1 we described how the algebraic model of routing separates the language,
that determines how a network configuration can be expressed and the meaning of
‘best’ paths over that network, from the algorithm that computes the best paths of a
given network configuration. We have also described how metarouting builds on this
concept by providing a method for specification of routing languages, that is designed
to be used for both modeling and implementing practical internet routing protocols.

There is an important question here: How well does this language/algorithm split ap-
ply to current routing protocol designs and implementations? To what extent is it an
observation of today’s routing from a new perspective (providing a solid foundation
from which we can explore new ideas), rather than a radical new paradigm that re-
quires a clean-slate approach to routing? If it is a natural division then we gain two
benefits. Firstly, we can use this model to help understand current protocol designs. It
is much easier to reason about the protocol’s language semantics when it is separated
from the low-level algorithm implementation details, but only if this is a correct and
clean separation and does not introduce significant new complexities itself. Secondly,
we can use current protocol implementations as a basis for a metarouting implemen-
tation. If we can cleanly separate the language and algorithmic components of the im-
plementation, then we can rewrite the language component (where the complexity is
largely in the conceptual design, which can be attacked with the tools provided by the
metarouting approach) without having to change the algorithm (where the complexity
is largely in the tens of thousands of lines of code dealing with network packets and
maintaining the routing tables and forwarding tables and providing a configuration
interface, which is much less amenable to a theory-based attack).

Some research has explored ways to improve the task of implementing routing algo-
rithms. XORP [HKG+05] is based around composable modules with event-driven in-
terfaces, to provide a clean architecture and extensibility that supports experimentation
with new routing protocols. Each module maintains internal state and processes a flow
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of routes. For example, BGP can be decomposed into separate modules that communi-
cate with a peer, apply filters, then resolve next-hop information, repeated in parallel
for each peer (dynamically adding and removing sets of modules as peers connect and
disconnect), all feeding into a single decision process module that picks best routes,
before fanning out into parallel sets of modules to filter and distribute best routes back
to peers. Viewed with our language/algorithm split in mind, XORP is modularising
the algorithm implementation while the language implementation remains a complex
chunk of C++ within the BGP decision process module; it is orthogonal and comple-
mentary to metarouting’s approach of specifying the language at a higher level and
compiling into the implementation.

Declarative routing [LHSR05] implements routing protocols in a declarative database
query language, Datalog, instead of the traditional imperative C/C++ languages. Pro-
tocols are specified as queries in the language, crafted so that the execution of the
query in a distributed Datalog implementation matches the desired behaviour of the
protocol. Examples given in the paper have a clear language/algorithm split, with the
language providing a pair of functions (AGG and f compute). As with XORP, it aims to
provide extensibility and flexibility to algorithm implementations; whereas XORP does
this by providing a system architecture to manage the complexity of the implementa-
tion, declarative routing works by pushing all of the complexity down into the Datalog
layer. As with metarouting, routing languages are specified in a declarative language;
however, whereas RAML has well-defined algebraic semantics and automatic prop-
erty inference to ensure the routing language can be safely used, Network Datalog has
far more complex semantics and the safety properties may not be provable in general.
(Nigam et al. [NJW+10] list difficulties with specifying its semantics, and prove cor-
rectness only for the non-recursive fragment of the language.) As such, declarative
routing would be more appropriate as an implementation language for routing algo-
rithms in the metarouting model, as an easier-to-write alternative to C/C++, and does
not reduce the need for RAML and routing algebras when defining routing languages.

With these approaches attempting to address the complexity of algorithm implemen-
tation, we will focus on metarouting’s attempt to address the complexity of the routing
languages.

In this chapter we start by formulating RIP and BGP in our language/algorithm terms,
showing that they follow this model quite well but with a number of possible ways to
perform the split. We then briefly discuss a number of other protocols, to determine
whether the model applies more widely to protocol designs. Next we consider a few
general issues with applying the algebraic routing model to vector protocols, because
of the distributed nature of their computation and configuration.

Then we describe the details of implementing a metarouting system that reuses the
algorithm implementations of RIP and BGP from the Quagga protocol suite, along
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with the benefits and drawbacks of this approach, and consider the portability of this
solution between different algorithm implementations.

4.1 Generalising RIP

4.1.1 Language

At a basic level, RIP is modelled algebraically as using the routing language of shortest
paths over bounded integers: it is (S, L, �, B) where

S = {0, 1, 2, . . . , 15, ∞}
L = {1, 2, . . . , 15, ∞}
� = ≤

l B s =

{
l + s if l + s ≤ 15

∞ otherwise

This satisfies the distributive and increasing properties discussed earlier. Given this lan-
guage, and a network configuration expressed as a labelled graph, we can use a range
of algorithms – such as matrix multiplication, or a distributed Bellman-Ford implemen-
tation – and the properties guarantee they will converge to the same routing solution,
without needing to reproduce the exact details of RIP’s operation.

However, when looking deeper at the reality of RIP as used today, it becomes clear
that this language is not the full story. In Quagga’s RIP implementation, the main
divergence from this basic model is policy expressed as route maps. The default pro-
cessing on an interface (adding a positive integer to a route’s metric before advertising
that route) can be replaced entirely with a custom route map. These are functions that
match on the metric value (equality with a configured constant), and on other prop-
erties of the route (interface, next-hop, IP address, route tag). They can filter out a
matching route, change its next-hop or tag, and modify its metric by either adding a
constant, subtracting a constant, or replacing the metric entirely.

The ability to apply different offsets depending on the exact value of the metric means
we lose the guarantee of distributivity: the preference order between two routes can
be flipped by the application of the same policy. This is not a major problem for RIP,
since the distance vector algorithm will still converge to a local optimum solution.

More serious is the violation of the increasing property, by the ability to subtract or
replace the metric. This is clearly a feature that must be used with great care and with
knowledge of the network topology, to avoid persistent routing loops. Since one of
the goals of the metarouting approach is to guarantee the absence of problems such



74 4.1. GENERALISING RIP

as routing loops without global constraints on configuration and topology, we simply
cannot support this feature.

These issues are not unique to Quagga – they also apply to the implementations of RIP
documented by Cisco IOS [Cis11] and JunOS [Jun10a]. We will discuss route maps in
detail in Chapter 6, and ignore them for the rest of this chapter.

With the exception of route maps, the algebraic language expressed earlier is a quite
accurate match to the operation of RIP implementations.

4.1.2 Algorithm

With a few complications, we can describe the routing language of RIP independently
of its algorithm, as shown in the previous section. This section looks at the comple-
mentary question of how we can use RIP’s algorithm independently of its routing lan-
guage.

The RIP specification combines the algorithm and language into a single protocol def-
inition, so it cannot be used unmodified with a new routing language. There are a
number of ways it can be modified so that the algorithm definition is independent of
(but imposes constraints on) the language. We have developed a specific set of modifi-
cations under the name generalised RIP (gRIP), which supports a wide range of routing
languages without losing the essential character of RIP.

The first technical restriction in RIP is that metrics are represented in response packets
as integers in the range [1, 16] encoded in four bytes. Constraining routing languages
to use exactly this metric would be extremely inflexible. Constraining them to use
any metric that can be encoded in four bytes would allow more interesting variety
(e.g. a combined distance–bandwidth metric with each number encoded in two bytes),
but would still exclude many useful languages (e.g. one that stores a path within the
metric, converting RIP from a distance-vector to a path-vector protocol). Relaxing the
metric size to a per-language constant would allow further variety, but would require
bounds on all lists and sets and would be inefficient if most of the allocated bytes are
often unused.

gRIP aims for the most general approach of allowing variable-sized metrics (with the
length encoded in the packet just before the metric), requiring of the routing language
only that it provide functions for converting metric values to and from a stream of
bytes. In practice, gRIP is not quite this general – it follows RIP’s maximum packet
size of 512 bytes with no ability to split a single route update across multiple packets,
imposing an upper bound on the size of a single metric. Exceeding this bound results
in a run-time error and the route is dropped from the advertisement packet.

A slightly more subtle restriction is in the assumptions the RIP algorithm design makes
about the behaviour of its language. In particular, it assumes that counting-to-infinity
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is an acceptable (though undesirable) state – this can occur whenever there is a cycle
of three or more routers and one of them withdraws a route, depending on update
timings. In standard RIP, the worst case is that it will take 15 update cycles (each up
to 30 seconds long1) before the metrics associated with echoes of the original route
reach ‘infinity’ and the route is dropped. The choice of 15 as the maximum metric is an
explicit tradeoff between the speed of convergence in counting-to-infinity cases, and
the maximum size of the network.

A routing language designed for use with gRIP must take this tradeoff into account. A
shortest-path language (N∞, N∞, ≤, +) over unbounded integers would be unsuit-
able as it would not guarantee convergence, even though it has a well-defined solution
and can be computed correctly by other algorithms. But this does not restrict languages
to the simple one used by RIP: it would be possible to combine a maximum hop count
with an arbitrary metric in a lexicographic product, or to prevent cycles by encoding
the path within the metric (as with BGP AS paths).

RIP’s split horizon feature is designed to prevent counting-to-infinity cycles between
two neighbours, and is purely an algorithmic optimisation with no additional impact
on the routing language design, so we can use it in gRIP with no difficulties.

The poisoned reverse feature helps the propagation of information about route re-
movals, by advertising the route with a metric of 16 to indicate removal instead of
waiting for the expiry timeout. In gRIP we require the routing language to provide
an infinity value, which is used for this purpose. We could instead have added a new
flag to indicate withdrawal messages, but the use of an explicit infinity metric is more
consistent with the original design of RIP.

4.2 Generalising BGP

BGP has a much more complex routing language than RIP, discussed in Section 2.3.2,
and a detailed description is not attempted here. Fortunately, unlike RIP, the design
of BGP naturally supports protocol extensions: route advertisements contain a series
of variable-sized attributes, making up the complex metric type associated with each
route. New attributes can be added by external agreement on the meaning of attribute
type ID numbers, with no changes to the basic packet structure. This external agree-
ment typically occurs through the publishing of RFCs and the allocation of numbers
with IANA [ian11].

Most of the standard BGP attributes only have an effect on route selection. These
include LOCAL_PREF, MULTI_EXIT_DISC, ORIGIN and AS_PATH, plus extensions such as

1 Timer randomisation and triggered updates make this worst case very unlikely to occur in practice,
but can’t guarantee it will never happen.
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communities. The main exception is the NEXT_HOP attribute, which is used to set up
forwarding tables.

As with gRIP, we have developed a modified version of BGP to allow new routing
languages to be used in tightly-defined extension points with no further changes to
the algorithm. Our design for gBGP replaces all of the route-selection attributes with
a single attribute that is controlled by the chosen routing language. Routes must have
the NEXT_HOP and new METAROUTING_METRIC attributes, and no others. As with gRIP,
the routing language must serialise metric values to and from a variable-length byte
stream, and the algorithm does not care about the structure of those bytes. BGP’s
decision process is replaced with the routing language’s metric comparison operation.
As BGP assumes the decision process will only return a single best route, the routing
language must provide a total order.

One significant design choice here is that we consider the AS_PATH attribute to be part
of the language, not part of the algorithm. gBGP therefore does not provide the loop-
freedom guarantees that AS paths provide – as with RIP, it is up to the language to
deal with this (perhaps by including a mechanism equivalent to AS paths or perhaps
by taking a different approach). Unlike RIP, the BGP algorithm is designed with the as-
sumption that the AS path will prevent any loops that may lead to counting-to-infinity
states. Whereas RIP will propagate stale route information with a worst case of 30
seconds per hop, and a typical case that is much faster, BGP has a best case of a config-
ured constant “MinRouteAdvertisementIntervalTimer” (recommended as 30 seconds
by the RFC) per cycle, as an enforced delay to intentionally rate-limit oscillations. Fur-
ther, BGP route flap damping [VCG98] can introduce far more extreme rate-limiting –
a prefix receives a penalty each time the router sees it change, slowing and eventually
stopping the propagation of routing information, and the penalty decays exponen-
tially with a half-life of typically 15 minutes [Cis09a]. A RIP-like routing algebra that
relies on counting-to-infinity with a small infinity will therefore have disastrously bad
convergence performance in BGP, even though the algebraic properties show it will
eventually converge correctly.

An alternative design choice would be to retain the AS PATH attribute and consider it
an inherent part of the algorithm, given how fundamental it is in the design of BGP.
We will call this algorithm gBGPAS, and it will guarantee loop-freedom for any rout-
ing language. Although BGP uses the AS PATH length as a factor in its decision pro-
cess, it comes after comparing LOCAL PREF and before comparing attributes such as
MULTI EXIT DISC. Since we still want gBGPAS to be reasonably generic, the local pref-
erence and MED attributes will be part of the routing language and not hardcoded in
the algorithm. The algorithm can only use the routing language’s metric comparison as
an indivisible operation, and cannot slip an AS PATH length comparison into the mid-
dle of two of the routing language’s fields (as would be necessary to emulate BGP’s
behaviour) without violating the language/algorithm abstraction. We must therefore
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say that AS PATH is used only for detecting loops, and its length is not used as part of the
decision process. Instead the routing language must perform its own path computa-
tion if it wishes to use path lengths in its order. This separation of loop-detection from
length-determination introduces some redundancy into the protocol, but provides a
cleaner separation of responsibilities.

BGP’s capabilities mechanism is used to ensure gBGP neighbours are using the same
routing language. When setting up the connection, the routers compare a 16-byte
unique ID that identifies the routing language and refuse the connection if it is in-
consistent. When the routing language is generated by the ERL-to-C++ compiler, this
unique ID is a cryptographic hash of the parsed ERL syntax tree. This allows the use
of any number of languages with negligible chance of accidental ID collisions, and
without the overhead of using an external numbering authority.

4.3 Generalising other protocols

This dissertation focuses on RIP and BGP, but it is useful to explore how well the
language/algorithm split can apply to other vector routing protocols based on the
Bellman-Ford algorithm.

4.3.1 EIGRP

EIGRP [AGLAB94] is a distance-vector protocol which explicitly defines a special com-
posite metric type with addition and comparison operations, corresponding to our no-
tion of a routing language, and an algorithm that uses that language.

To prevent routing loops at any time during convergence (and therefore to prevent
counting-to-infinity), EIGRP uses DUAL (the Diffusing Update Algorithm) [GLA93].
This is designed to allow fast convergence, while preventing a router from selecting
a route that could potentially loop back to itself. The only assumption DUAL makes
about the metric is that it is increasing: if a router sees a route to a destination with
a more preferred metric than it has recently advertised itself for that destination, then
it knows the route cannot pass through itself and is safe to use immediately. If it can-
not find any unambiguously safe routes, it switches to a more expensive convergence
mechanism (the diffusing computation; effectively a variation of the distributed Bellman-
Ford algorithm where a node asks its neighbours to update their own routes (which
may require them to perform a diffusing computation themselves) before using their
newly updated state in its own step of the DBF algorithm, to prevent transient loops
caused by the use of stale information).

The EIGRP metric consists of four integer components: bandwidth (stored in an in-
verted form so smaller numbers are better), delay, load and reliability. Each component
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is processed separately in route advertisements: delays are combined with addition,
inverse-bandwidths and loads with max, and reliabilities with min. When comparing
routes, the components are arithmetically combined into a single integer with user-
configurable weights (which must be consistent across the network).

The routing language can be expressed in our algebraic model as:

S = N×N×N×N

L = N×N×N×N

(aB, aD, aL, aR)⊗ (bB, bD, bL, bR) = (max(aB, bB), aD + bD, max(aL, bL), min(aR, bR))

a � b = W(a) ≤W(b)

where the comparison operator maps each composite metric onto a scalar number with
the weight function W,

W(aB, aD, aL, aR) =


(

(K1aB + K2aB
256−aL

+ K3aD) · K5
K4+aR

)
· 256 if K5 6= 0(

(K1aB + K2aB
256−aL

+ K3aD)
)
· 256 otherwise.

As long as the constant weights K are positive, this is increasing, but for most combi-
nations of K it is not distributive.

In practice, the link label’s load and reliability values (aL, aR) are calculated dynam-
ically by the router software based on measurements of relevant factors, so they are
likely to fluctuate over time. Conceptually this is the same as manual reconfiguration
of policy on a router, but may be much more frequent and may have consequences
on the algorithm design to ensure efficient performance. However, Cisco strongly
suggests setting K2 = 0 and K5 = 0 so that only bandwidth and delay are used for
route selection: “Although you can configure other metrics, we do not recommend it,
as it can cause routing loops in your network.” [Cis04]; the DUAL algorithm prov-
ably prohibits loops when used as designed, so it may be assumed that Cisco’s EIGRP
does not exactly match DUAL, most likely by failing to handle dynamic changes to
load/reliability with a full recomputation (which may trigger an expensive diffusing
computation) and instead using a simpler update process which may violate the feasi-
bility conditions defined by DUAL, though this is speculation given the lack of detailed
documentation. Whatever the reason, the lack of use of these dynamic attributes indi-
cates they are more trouble than they are worth, so we will not explore them further.

Although we can express this routing language as an algebra, there is no way to ex-
press the additive composition of values in the current version of RAML. However,
this could likely be added as a future extension of RAML without any fundamen-
tal changes. Just as we can combine two algebras with a direct product or a lexico-
graphic product (which differ only in their definition of �), we could imagine combin-
ing two algebras (S, L1,�S, B1) and (S, L2,�S, B2) with an additional order semigroup
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(S,�S,⊗) to give a new algebra similar to a direct or lexicographic product but with

(a1, a2) � (b1, b2)⇔ (a1 ⊗ a2) �S (b1 ⊗ b2).

To model the simplified bandwidth-delay EIGRP metric with this, we would combine
bandwidth (N, N, <, max) and delay (N, N, <, +) with the order semigroup (N, <
, +) to produce an algebra that compares the sum of bandwidth and delay. The main
complication is determining the property inference rules: in this case the three input
algebras are non-decreasing and distributive, and the resulting algebra is increasing
but non-distributive, but a comprehensive analysis would be necessary for RAML to
support inference of properties for arbitrary algebras. We do not attempt this work
here.

Gouda and Schneider [GS03] define the term “maximizable routing metric” to refer
to what we would call routing algebras that are non-decreasing (“bounded” in their
terms) and distributive (“monotonic”), and show those properties are necessary and
sufficient for a distance vector algorithm to find a global optimum solution (“max-
imum metric tree”). They find that a simplified EIGRP metric with W(aB, aD) =
aB + aD is non-distributive, and further that non-distributivity violates some assump-
tions about DUAL, resulting in poor performance characteristics due to the potential
for an update to unexpectedly trigger more than a single diffusing computation. How-
ever, they do not explore the meaning of the routing solution that the algorithm will
find, which we now understand as a local optimum.

Given this separation of EIGRP metric language and algorithm, we can imagine a
gEIGRP protocol along the same lines as gRIP, replacing the hard-coded metric value
with an arbitrary variable-length one determined by the routing language. Unlike BGP
AS paths, the DUAL loop prevention approach is clearly a part of the algorithm and
not a part of the language – it is tightly integrated with details of network packet pro-
cessing, and the algorithm must maintain various extra tables in order to implement
it. Unlike gRIP, a routing language used with gEIGRP does not have to deal with the
counting-to-infinity problem as the algorithm itself will prevent such a situation.

4.3.2 AODV

The AODV protocol [PBRD03] uses sequence numbers to prevent loops, and an 8-bit
hop count as the metric. The metric is used as a feasibility condition – new routes with
an equal sequence number to the current route selection are accepted if the new route’s
hop count is less than or equal to the current route’s, since they couldn’t possibly be
part of a cycle through that router. This simply requires the metric to be increasing, so it
could come from any increasing routing language. However, the hop count is also used
to initialise IP TTLs for route request flooding, so it straddles our language/algorithm
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divide and there is not as clean a separation as in the other protocols we have exam-
ined. If we were to design a gAODV protocol where the routing language metric is
opaque from the algorithm’s perspective, we would have to compute the hop count
alongside the metric so that the algorithm can continue to use it for the flooding pro-
cess. However, the use of complex metrics would go against AODV’s goals of low
processing and memory overhead and network utilisation, so gAODV would likely be
unsuitable for the environments for which AODV was designed while still using an
algorithm designed for those tight constraints.

4.3.3 Babel

The Babel routing protocol [Chr11] uses sequence numbers similarly to AODV, with
the goal of performing better in unstable networks than protocols such as RIP. The
specification explicitly discusses the metric using the terminology of Sobrinho’s rout-
ing algebras:

the function M(c, m) used for computing a metric from a locally computed
link cost and the metric advertised by a neighbour MUST only satisfy the
following conditions:

1. if c is infinite, then M(c, m) is infinite;

2. M is strictly monotonic: M(c, m) > m.

Additionally, the metric SHOULD satisfy the following condition:

1. M is isotonic: if m ≤ m′, then M(c, m) ≤ M(c, m′).

However, the Babel algorithm assumes metrics are positive integers and can be com-
pared with < and encoded in 16 bits with 0xFFFF for infinity – the genericity is solely
in the computation of a new integer metric, based on the old integer metric and any ex-
tra node state (e.g. battery status) and link cost (e.g. estimated from packet loss stats),
while the metric type and comparison are hard-coded into the algorithm, providing
very limited flexibility. Fully generalising the algorithm using metarouting’s routing
languages would be a similar process to developing gRIP, replacing the algorithm’s
16-bit metric fields with a variable-length metric and using the language’s comparison
operation instead of integer less-than. One complication is that the Babel RFC states
“A node SHOULD NOT send triggered updates [...] when there is a minor fluctuation
in a route’s metric” – it does not define a minor fluctuation, but the intent is to re-
duce network traffic if the metrics depend on random variables such as battery status
whose changes are usually insignificant. Our current definition of routing languages
has no support for the concept of distinguishing minor fluctuations, though nor does
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it have the concept of depending on fluctuating external variables; a version of gBabel
using the current metarouting system would simply ignore these complications and
work correctly without them, though they suggest future possibilities for extending
our notion of routing languages.

4.4 Differences with the model

In this description of protocols, we have made a few simplifications in order to match
the algebraic routing model described earlier.

One of these simplifications is the concept of a network configuration as a set of la-
belled edges between nodes. In most protocols, these labels do not exist as explicit
data. Instead, each router has its own configuration data that controls both how it
imports routes from the network, and how it exports routes back to the network.

For example, by default a RIP router increments the metric when exporting a route, but
in typical implementations it can be configured to update the metric on both import
and export. This does not add any expressive power to the protocol (it is always equiv-
alent to some graph whose arc labels are the sum of import and export increments), but
it may simplify the configuration of certain network designs. BGP defaults to perform-
ing some computation on import (such as setting LOCAL_PREF) and some on export
(such as setting MULTI_EXIT_DISC) – in this case a router may be talking to a router that
is under separate administrative control, and the location of the configuration data and
of the processing is critical for security and information-hiding purposes.

We discuss this issue in detail in the Chapter 5. For this chapter, we assume that all con-
figuration and processing occurs on export, and routes are imported from the network
directly into routing tables with no further modification. This has only a minor effect
on the implementation concerns discussed here, so we ignore the extra complication
for now.

Another issue is the origination of routes. These typically come into a protocol via
redistribution from either another dynamic protocol, or from a statically-configured set
of routes. Redistribution is a complex topic and we do not discuss it here – we simply
assume the existence of some mechanism to inject routes with valid metrics into the
protocol. Some related work has begun to explore redistribution [LXZ07, LXP+08,
LXZ10] and its role in the metarouting system [BG09, Ali11].

We are focusing entirely on routing, and ignoring the distinct concept of forwarding.
We assume a direct correspondence between the paths of route advertisements and of
data packets, whereas protocols such as BGP can set up routes based on different next-
hop addresses (especially with route reflectors, which partially centralise the routing
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computations without centralising the forwarding), and redistribution between multi-
ple protocols can result in forwarding tables that do not match any individual protocol.
While these are important features for practical routing implementations, they are not
part of the core functionality of routing, so we will continue assuming routing and
forwarding are equivalent.

4.5 Implementing gRIP and gBGP

We have shown how current protocol designs can be split into language and algorithm
components, which allows us to reason about protocols using the algebraic model. The
question this section addresses is whether we can carry this conceptual split through
to current protocol implementations, and use them as implementations of gRIP and
gBGP that tie into routing languages produced by our metarouting compiler.

We used the RIP and BGP implementations of the Quagga routing suite for this work.
Quagga is a fairly well-established open source system, written in the C language.
Section 2.4 gives a brief overview of its design. We use the term gQuagga to refer
collectively to our generalised algorithm implementations.

4.5.1 Linking

Given a gQuagga algorithm and an executable routing language produced by the
metarouting compiler, we need a way to link the pieces of code together. There is a
range of feasible options, from very tightly coupled to very loosely:

Source insertion – place the language implementation code directly into the relevant
locations in the algorithm, either by editing the source files or using C preproces-
sor macros, and then compile the combined code.

Static linking – compile the language and algorithm implementations into object files
independently, with the algorithm calling functions defined by the language, and
then use the C compiler’s linker to combine them into a single executable.

Dynamic linking – compile the language into a dynamically-loaded shared library,
with the algorithm compiled into an executable that loads the library at run-time
and calls into it using function pointers.

Inter-process communication (IPC) – compile the language and algorithm into sepa-
rate executables, that can connect and communicate at run-time using a standard
IPC mechanism such as sockets.
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Recall that the metarouting compiler emits C++ code. This makes source insertion dif-
ficult, as Quagga is written in C – its code and build system would have to be ported
to C++, which is a large and disruptive change. (The problem would be avoided if the
metarouting compiler emitted plain C code, but there were compelling reasons for it
to choose C++ instead.) Static linking avoids this difficulty, as object files produced
by the C compiler and C++ compiler can be linked together if they define compati-
ble interfaces. However, this requires a function call for every operation on a metric
(whereas the compiler could easily inline and optimise functions that were inserted
directly into the algorithm code), and imposes a generic interface between the algo-
rithm and language that may not be optimal in all cases (e.g. requiring explicit “copy”
and “free” operations on metrics, in case they must perform memory allocation, even
if the particular chosen language does not need this), which may have a measurable
performance impact on code that performs large amounts of metric processing.

Both of these options require that the protocol executable is recompiled or at least re-
linked whenever the language is changed. This is a fairly slow process, and requires a
means to distribute the new executable to the routers that will run it. Dynamic linking
avoids this by performing the linking at run-time, so only the language itself (which
is typically very small) needs to be recompiled and distributed when it changes. This
requires more complex code in the routing algorithm, to load the library and initialise
function pointers to call into it, and the indirection adds a small run-time cost to each
function call. It also requires operating system support for dynamic loading which
may be unavailable on some non-general-purpose routing devices.

IPC imposes the least restrictions – the algorithm and language do not even have to
be written in languages that have binary-compatible interfaces (as C and subsets of
C++ have). By using TCP sockets for communication, they do not even have to be
running on the same physical machine. Quagga already uses an IPC mechanism, with
each routing protocol running in its own process and asynchronously communicat-
ing with the central “zebra” daemon (which coordinates between the protocols and
updates the router’s forwarding tables) over sockets that can be either local or net-
worked. Unfortunately this approach has high latency, making it unsuitable for the
frequent synchronous operations that a routing algorithm requires.

As a result of these considerations, and given the benefits of rapid iteration to our
early experimental system, we chose to use dynamic linking for gQuagga. A sta-
ble production-quality system running on embedded hardware may make a different
choice if it chose to separate the algorithm and language in this way.

There are two additional layers between the algorithm and language. Since the meta-
routing compiler generates C++ code using features like classes and templates, we
need a wrapper that converts it to a C-compatible API of functions and pointers. This
is the mrc API. Additionally we have a layer inside gQuagga that deals with the com-
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plexities of loading the library and setting up function pointers, and also provides
a type-safe API (by wrapping pointers in structs) and various debugging features
(memory leak detection, error reporting) that are not provided by the routing language
implementation itself. The rest of the gQuagga code calls functions provided by this
internal API, keeping all the implementation details hidden from the gRIP and gBGP
algorithm code.

To illustrate the details of this API layering, we will consider the example of gRIP
performing a route comparison. gRIP contains code such as

if (mrc_metric_is_better (routing_language, metric, rinfo->metric))

{

...

}

where routing language was previously loaded by a call to mrc init("filename.so")

and contains global state (primarily a pointer to the shared library that implements the
routing language). Here metric is a metric that was decoded from a network packet,
and rinfo->metric is the metric of the previous best route to that destination.

mrc metric is better is part of the mrc API, shared between all gQuagga routing al-
gorithms. It is implemented as

int mrc_metric_is_better(mrc_language_t lang, mrc_metric_t x, mrc_metric_t y)

{

ASSERT_VALID_METRIC(x);

ASSERT_VALID_METRIC(y);

return DLL(lang)->metric_is_better(SIGVAL(x), SIGVAL(y));

}

When compiled in debug mode, ASSERT VALID METRIC checks the value is non-null and
of the correct type and that its memory has not been deallocated, to help detect bugs
and misuses of the API that would otherwise cause incorrect behaviour. This is nec-
essary because of C’s lack of strong type-safety and automatic memory management.
The type mrc metric t is based on the structure

typedef struct sig

{

int freed;

const char *source;

void *backtrace[16];

sig_type type;

struct language *lang;
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void *value;

} sig;

where the first five fields are for tracking allocation details for error detection and er-
ror reporting (omitted when not compiled in debug mode), while the value field is a
pointer to an object managed by the shared library implementing the routing language.
mrc metric is better uses the SIGVAL macro to extract this value, and passes it to the
function pointer loaded from the shared library.

The function implementation in the shared library is

DLLEXPORT int mrc_impl_metric_is_better(void *m0, void *m1)

{

return plus()(*(metric_t *)m0, *(metric_t *)m1) == MRC_ORD_LT;

}

This function is implementing the mrc API. Everything before this point has been part
of gQuagga, but this is the standard interface between routing languages and routing
algorithms – the same mrc impl metric is better could be called by a non-Quagga-
based routing algorithm. (For example, we have a Python-based network simulator
which uses this API to help test the behaviour of a routing language.)

This function is again a wrapper: the real functionality is provided by the C++ code
which the mrc compiler generates from an ERL specification. For example, metric t

and plus may be defined as

typedef AddConst<IntBound<0, 15>, str_INF> metric_t;

typedef AddConstTop<IntLte> plus;

to provide a RIP-like routing language. This generated code is compiled against libmrc,
which provides the standard definitions of AddConst, IntBound, AddConstTop and IntLte,
and against the mrc API wrapper which defines the mrc impl metric is better func-
tion in terms of the C++ template types.

4.5.2 Configuration syntax

A critical part of any routing protocol implementation is its configuration interface.
Quagga borrows heavily from Cisco’s configuration syntax. In this section we will
discuss how a routing language produced by the metarouting compiler is integrated
into this interface. Other protocol implementations have very different syntax, but
similar concepts are applicable.
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router bgp 1111

bgp router-id 10.0.1.4

neighbor 10.0.2.2 remote-as 2222

neighbor 10.0.2.2 route-map EXAMPLE1 in

neighbor 10.0.1.3 remote-as 1111

neighbor 10.0.1.3 route-map EXAMPLE2 out

route-map EXAMPLE1 permit 5

match as-path 2100

set local-preference 100

route-map EXAMPLE2 permit 5

set metric 100

Figure 4.1: BGP configuration file example.

Figure 4.1 gives an example of Quagga’s standard BGP configuration syntax. This
sets up the router to run BGP with AS number 1111. It initiates connections to two
neighbouring BGP routers, the first in a different AS (2222) and the second in the same
AS. It sets up a different route map for each neighbour to define its routing policy.

Configuration commands can be put into a file, or entered into an interactive terminal.
In the interactive mode, the tab key is used to auto-complete commands and provides
documentation about all possible choices.

Quagga implements its configuration interface with a series of command elements.
Each of these has a template string that defines the command’s keywords and vari-
ables, plus a corresponding function that is called when that command is entered.
A template like "set dist <1-255>" will accept commands such as "set dist 10",
restricted to the given integer range, and a template like "set name STRING" will ac-
cept any token for the variable. Each line of the user’s input is matched against these
patterns; if none match then an error is reported, else the corresponding function is
executed with the template’s variables passed as arguments.

The command lists are constructed by Quagga at run-time (by very large amounts
of verbose C code), so it is possible for us to add extra commands during the dy-
namic loading of routing languages. Other protocol implementations such as XORP
construct code for their configuration interface at compile-time based on a declarative
specification of the configuration commands, which may make them trickier to extend
at run-time in this way and may require a different approach.

Figure 4.2 sets up a gBGP router. This is a demonstration of how the use of a declara-
tive language like ERL allows us to automatically generate boilerplate code necessary
for running a routing language as part of a complete protocol implementation. The list
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routing-language scoped_prod

router bgp

bgp router-id 10.0.1.4

neighbor 10.0.2.2 route-policy EXAMPLE1 out

neighbor 10.0.1.3 route-policy EXAMPLE2 out

route-policy EXAMPLE1

set external ecomm 2

set external epath 2222

set external idist 0

set external ipath empty

end-policy

route-policy EXAMPLE2

set internal idist 1

set internal ipath 1111

end-policy

Figure 4.2: gBGP configuration file example.

Expression e Configuration commands JeK
TyUnit {"unit"}
TyInt {"<-2147483648-2147483647>"}
TyIntNonNeg {"<0-2147483647>"}
TyIntPos {"<1-2147483647>"}
TyIntRange(n, m) {"<n-m>"}
TyString {"STRING"}
TyList(t) {"empty"} ∪ {"INDEX e" | e ∈ JtK}
TyListSimp(t) {"empty"} ∪ {"INDEX e" | e ∈ JtK}
TySet(t) {"empty"} ∪ {"INDEX e" | e ∈ JtK}
TySetMin(t) {"empty"} ∪ {"INDEX e" | e ∈ JtK}
TyAddConst(c, t) {lowercase("c")} ∪ JtK
TyRecord(n1=t1, n2=t2) {"n1 e" | e ∈ Jt1K} ∪ {"n2 e" | e ∈ Jt2K}
TyUnion(n1=t1, n2=t2) {"n1 e" | e ∈ Jt1K} ∪ {"n2 e" | e ∈ Jt2K}

Figure 4.3: Extraction of configuration commands from ERL type syntax.
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of set commands is generated recursively from the tree structure of the ERL expres-
sion defining policy types. To match the traditional design of Cisco-like configuration
languages, we choose to flatten the tree structure into a flat list of commands that each
specify the value at a leaf node. Although a hand-crafted configuration syntax has the
potential to provide a more natural and convenient interface, this automatic approach
can handle any arbitrary ERL type while being reasonably elegant for the common
cases.

Based on the ERL syntax in Chapter 3, we define the configuration commands gener-
ated for any ERL type expression in Figure 4.3. For example, the type

TyRecord(a = TySet(TyAddConst(INF, TyIntNonNeg)), b = TyUnit)

will expand into the following set of commands:

a empty

a INDEX inf

a INDEX <0-2147483647>

b unit

The value ({100, 200, ∞}, 1) could then be specified in the configuration file as

set a 0 100

set a 1 200

set a 2 inf

set b unit

This handling of lists and sets with explicit indexes and a single command per element
is somewhat inelegant, but it permits us to have complex record types inside a list
without the syntax becoming unbearable. It would be possible to add an optimisation
for the common case of lists in which each element is specified as a single token, so
that the user can specify the entire list in a single line of space-separated tokens, while
retaining the currently-defined approach for scalability to more complex types, but we
do not do this here.

Along with generating the list of commands, we also generate code that will either
return an error message or construct a value of that type, given a set of commands
entered in the configuration file. Errors include failing to specify values for required
leaf nodes in the type expression tree, or specifying values for more than one branch
of a disjoint union. There is also code to convert a value back into a list of commands
that will construct it, so that the router can print or save its configuration state.

This translation from ERL types into code that sets up the Quagga configuration sys-
tem is written entirely in C++, using partial template specialisation over the templated
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representation of ERL types that the mrc compiler generates. It is then exposed through
the mrc API so that it can be accessed by gQuagga. This means the mrc API can con-
tinue to treat the routing language’s types and values as opaque objects, and there
is no need for a “reflection” ability to expose the structure of these types that would
let gQuagga construct configuration commands by itself. However, this does mean
that mrc must be aware of some of the implementation details of Quagga in order to
construct the function pointers and data structures that are exposed through the API,
which slightly blurs the abstraction between language and algorithm.

Although our implementation is only for Quagga’s configuration syntax, the same con-
cepts can apply to configuration of XORP or to JunOS-like syntax. This automatic
approach to configuration demonstrates a significant benefit of the metarouting sys-
tem: by restricting ourselves to the set of routing languages that can be expressed in
ERL, and by specifying routing languages declaratively, we can automatically provide
a clean, consistent, complete integration with these low-level details of the routing al-
gorithm, freeing the language designer from the need to manually implement all the
details before they can start experimenting with a new routing language.

4.5.3 Drawbacks of generalisation

Implementing these generalised routing algorithms using Quagga reveals a few diffi-
culties with the details of the approach. The most problematic change to the protocol
semantics is that RIP has a very simple wire protocol, and the gRIP extensions lose
some of that simplicity due to the use of variable-length metrics. This particularly af-
fects the behaviour of non-whole-table Request messages. In standard RIP [Mal98],
these consist of a single UDP packet with one fixed-size “route entry” (RTE) per desti-
nation for which they wish to request the route metric. The RTE metric fields are left
blank in the request. A router that receives such a packet simply fills in the metric
fields of each RTE entry, flips the ‘command’ byte in the header to indicate a response
message, and sends the packet back. In gRIP, the use of variable-length metrics means
that the request message cannot pre-allocate blank space for the metric fields, and the
response message may have to be split into many UDP packets. This entails greater
complexity and processing cost on the responding router, and since UDP is an unreli-
able protocol the requesting router may receive response packets for only a part of its
request. In this case, the generalised protocol sacrifices some of the relative elegance
in the original protocol’s design. In contrast, BGP is already designed for extensibility
and variable-length route attributes, so the transition to gBGP does not conflict with
the standard wire protocol’s design.

Code complexity is a danger when modifying software in ways it was not originally
designed to handle, but our experience with Quagga is that this has not been a signif-
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icant problem. The abstraction provided by the mrc API is a close match to the oper-
ations performed by the standard Quagga code, so most of the code could be ported
with very localised changes. The most widespread change was to perform explicit
copy/free of metric values, as variable-length metrics must be allocated in heap mem-
ory instead of on the C stack, and C provides no facilities for automatically managing
memory; the debugging facilities added by the gQuagga wrapper around the raw mrc
API were valuable in detecting problems with this. The largest chunk of new code
is for integrating the configuration syntax described earlier, but in this case it is re-
placing a large amount of hand-written protocol-specific configuration command code
– the result is a slight increase in conceptual complexity but also a simplification by
reducing the amount of code. In conclusion, the careful design of abstractions and
interfaces allows a protocol implementation to be generalised to support externally-
specified routing language with no major complexity cost.

4.5.4 Performance

One further concern is the performance impact of the changes, particularly the in-
creased overhead from the indirection of metric computations, and the loss of protocol-
specific optimisations (such as Quagga’s BGP implementation using a hashing scheme
to share common data such as AS paths between multiple routes). This section de-
scribes an initial investigation into the performance of the gQuagga implementation,
aiming first to quantify the inherent cost of the abstraction, and second to indicate the
extent to which the complexity of the routing language affects the overall performance
of the complete protocol.

Note that we are only interested in measuring control plane performance, not data
plane performance; our modifications do not affect the forwarding behaviour of the
router. Control plane performance is still an important issue as it affects the conver-
gence time after a topology change.

We performed all measurements using the gBGP algorithm; gRIP is less suitable for
comparison as the RIP protocol and implementation are designed for small networks
where CPU cost will be negligible, whereas BGP scales to network sizes where per-
formance is important. To provide a relatively fair comparison between standard BGP
and the generalised version, we modelled a part of BGP’s AS path functionality in
RAML, and compared against the unmodified BGP protocol by sending route update
messages that used only AS paths, so that most other parts of BGP’s route selection
mechanism were skipped. We also ran a version of the scoped product example from
Section 3.3.3 to see the effect on performance of a more complex routing language.
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Methodology

All experiments were performed with three routing protocols:

• std – the original BGP implementation from Quagga. The test devices sent UP-
DATE messages containing only the mandatory AS PATH, ORIGIN and NEXT HOP

attributes.

• paths – our implementation of gBGP, heavily based on Quagga’s BGP with min-
imal modifications. This uses a RAML specification representing lists of integers
bounded between 0 and 65535: paths(int range min plus(0, 65535)).

The tests sent UPDATE messages containing only the NEXT HOP and our new
METAROUTING METRIC attribute.

• regions – the same gBGP implementation but using a variation of the scoped
product example described earlier, with the path fields changed to lists of strings
instead of lists of integers.

The source data came from public Internet routing table dumps2 containing about
250,000 distinct prefixes. This large amount of data is helpful for investigating per-
formance as it provides a realistic distribution of prefixes and path lengths.

CPU time and dynamic memory usage measurements were taken with the getrusage

and mallinfo library calls from within Quagga’s BGP process. This means the time
measurements ignored periods when the process was inactive, such as while waiting
for various timers, and do not give an accurate picture of how long the routing protocol
will take to converge. As metarouting is changing only the routing language, not the
algorithm, these timer delays are outside the area we are interested in, and ignoring
them allows a much more precise view of the relative routing language performance.

Our test setup consisted of a desktop machine with an Intel Core 2 Quad CPU with
frequency scaling locked at 2.4GHz and 4GB RAM, running Quagga 0.99.9 on x86 64
Linux 2.6.23. All code was compiled in 32-bit mode to reduce memory usage.

Test devices were written using the Net::BGP Perl module for session maintenance,
with the UPDATE messages precomputed and written directly to the TCP socket to
minimise the runtime delay. All processes were run on a single machine, to avoid the
effects of network latency and bandwidth limitations. The Quagga BGP process was
configured to not update the kernel forwarding table, as we were only interested in the
routing protocol itself.

For the first experiment, we ran the routing process with an initially empty routing
table, then sent a number of UPDATE messages (one per distinct prefix) from a single

2http://data.ris.ripe.net/rrc01/2008.07/bview.20080702.0759.gz

http://data.ris.ripe.net/rrc01/2008.07/bview.20080702.0759.gz
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Figure 4.4: Dynamic memory usage of BGP and gBGP routers against number of re-
ceived routes.

test device connected and configured as a neighbour. This let us measure the memory
used to store the routing table, and the processing time required to read metrics from
the network and apply import policy.

We ran two further experiments to highlight different aspects of the CPU time cost,
each with two test devices connected to the routing process. In the first of these, only
one test device sent UPDATE messages, and the CPU time was recorded after these
routes had been propagated to the second test device. In the second case, both devices
sent UPDATE messages (with the same prefixes but slightly different AS paths) so that
the router would have to compare two routes for each prefix to pick the best, and the
processing time was recorded before the new best routes had been propagated to the
test devices.

Results

Figure 4.4 shows the memory usage against the number of UPDATE messages in the
first experiment. The memory used before storing any routes is similar in each pro-
tocol (around 1.5MB), and the per-route memory is the significant factor. (These mea-
surements exclude static memory, such as constant data and code. The gBGP routing
language libraries add roughly 100KB to this value, compared to the original BGP im-
plementation.)

The paths case required about 4 bytes less memory per routing table entry than std.
This is because Quagga’s BGP implementation stored AS paths as a linked list of sets
of integers to handle the aggregation and confederation features of BGP, whereas our
routing language omitted these details and was compiled into a dynamically-sized
array of integers.
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Test std paths regions

receiving 4.2 (100%) 4.5 (107%) 8.2 (195%)
sending 5.8 (100%) 6.2 (107%) 11.0 (190%)

comparing 5.5 (100%) 6.2 (113%) 11.3 (205%)

Figure 4.5: CPU time in seconds (% relative to std) for receiving 250K routes from a
neighbour; receiving 250K routes then sending to a second neighbour; and receiving
125K routes from each of two neighbours and comparing to select the best. Median of
three runs. Standard deviation is below 3%.

Figure 4.4 also shows the more complex regions example, where each metric includes
distance fields and the paths consist of strings instead of integers. This doubles the
total amount of memory used – the metric is a significant part of the overall cost of
each route.

Figure 4.5 shows the CPU time used by the BGP/gBGP process in each experiment.
The paths example is roughly 5–10% slower than std for all operations.

The regions example takes nearly twice as much time as std: the increased complexity
of the metric and policy means all operations are necessarily slower, and as with mem-
ory usage this has a significant effect on the overall route computation performance.

For a fair comparison against standard BGP we would have to implement the full BGP
feature set in a RAML specification, but these initial results demonstrate that our gen-
eralisation of the routing algorithm does not have a major performance cost. The cost
is instead a factor of the routing language, and our results show this can be significant
in our current implementation. Billings [Bil09] explores various approaches to opti-
mising the compiled C++ implementation of routing languages, including carefully
choosing efficient data structures and sharing common sub-values between metrics, as
well as more specialised optimisations based on the automatically-computed algebraic
properties of the routing language.

In summary, we do have to make some tradeoffs in performance and complexity to
support our generalised model of routing protocols, but the problems are fairly minor
and we consider it an acceptable cost for the benefits of the added power and flexibility
provided by the generalised protocol implementations.



Chapter 5

Configuration

5.1 Arc configuration vs. interface configuration

Until this point, we have used the standard graph model of a network when modelling
the behaviour of a routing protocol. We view a link between two routers as a labelled
arc between nodes, where the label represents the routing policy, as in Figure 5.1a. As
described in Section 2.1, a network configuration is determined entirely by the graph
layout (V, E) and the weight function w : E → L. The edges and weights can also be
encoded in an adjacency matrix A.

In practice, this is an overly simplified view of vector routing protocols. Link-state pro-
tocols may explicitly construct a representation of the network as an adjacency matrix
based on link state advertisements received from other routers, but in vector protocols
the network-wide behaviour is an implicit consequence of purely local decisions in the
distributed algorithm, and these local decisions do not closely match the model we
have been using. In particular, in a vector protocol implementation there is no single
obvious place to store a representation of an arc weight or to apply it to a routing met-
ric. The physical link has no storage or computational ability itself, so this must instead
be handled by one of the two routers connected to the link – but which one?

In the distributed Bellman-Ford algorithm described in Section 2.1.2, router v knows
the adjacency matrix entry A(u, v) and uses that value in its computation. However,
in all common vector protocols the link policy is split across both routers. The first
router has some policy specified in its configuration file, which it applies to a metric
before exporting it from its routing table onto the network link. (If it has links to many
routers, it may have a different export policy for each link.) The second router has an
independent policy in its own configuration file, which it applies to metrics received
over the link before importing into its routing table. (Similarly it may have a different
import policy per link.) This complication is ignored in our original algebraic model of
routing, but in this section we argue it is an important concern that should be examined

94
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Figure 5.1: Associating policy labels with (a) arcs, or (b) interfaces between nodes and
arcs.

through an extension of the algebraic tools.

Figure 5.1b illustrates how policy labels are no longer associated with arcs; instead they
are associated with the interfaces between nodes and arcs. In place of labels l ∈ L, we
have two separate label types lE ∈ LE and lI ∈ LI .

The gap between the arc-based algebraic model and the interface-based vector protocol
implementation is a significant problem for the metarouting system as described so far.
The algebraic correctness properties will only have practical relevance if the implemen-
tation closely matches the algebraic model – a large gap provides many opportunities
for unexpected un-modelled behaviour that breaks the protocol’s correctness. It is also
a challenge for metarouting as a mechanism for specifying implementations: if many
implementation details (such as the split between export and import policy) are hard-
coded into the routing algorithm implementation, the flexibility of routing languages
is greatly reduced. We therefore want a way to bridge the gap between algebra and
implementation. This chapter aims to build a section of the bridge to handle interface-
based configuration in the metarouting system. The design is an extension of work
published earlier by the author [TG09].

5.1.1 Benefits of import and export policy

There are two easy ways we could change a vector routing protocol to better match
our original arc configuration model: put the policy data and computation entirely
on the exporting router, or put it entirely on the importing router, so there is a direct
correspondence between policy and arc labels. The policy-on-export case is what we
have assumed throughout the previous chapter. However, there are important practi-
cal advantages to supporting separate policy on both import and export interfaces and
changing the model to match this.
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Some of these advantages are only applicable when some neighbouring routers are
under separate administrative control, and will not be important concerns in smaller
homogeneous networks, but some apply equally at all scales.

Support for export policy is important for:

• Information hiding: The routes stored by a region’s boundary router may con-
tain details of its internal network (e.g. internal paths) which can be commer-
cially sensitive and should not be seen by untrusted external neighbours. These
internal details should be erased before exporting to the link, so that there is no
chance of leaking them to neighbours. For example, BGP does not transmit its
LOCAL PREF attribute (which typically indicates the AS’s commercial relationship
with adjacent ASes) over EBGP.

• Administrative control: Some parts of policy, e.g. BGP’s MED attribute, are de-
signed to be configured locally on the exporting router, to provide a particular
limited control over the route selection process to the administrator on the export
side – it would defeat the point if the importing router configured these values
instead.

• Performance: When routes are filtered out, it is more efficient for the exporting
router to filter them, to avoid the CPU and bandwidth costs of needlessly adver-
tising the routes to its neighbour.

Support for import policy is important for:

• Security and robustness: The importing router may not trust its neighbour to only
export routes that are permitted under the rules of their commercial relationship.
Import filter policies allow the router to control what routes it accepts and re-
advertises to the wider network, e.g. restricting it to certain destination address
prefixes. This is also important for limiting the impact of misconfigurations that
would otherwise cause global routing instability [BFMR10].

• Administrative control: Some parts of policy, e.g. BGP’s local preference, are de-
signed to be configured locally on the importing router, to provide complete con-
trol over the route selection process to the administrator on the import side – it
would defeat the point if the exporting router configured these values instead.

• Performance: When applying policy that increases the size of a metric’s wire rep-
resentation (e.g. appending to a path list), applying that policy on import instead
of export will reduce the amount of data sent over the network link.

These issues are a critical part of the overall protocol design and are strongly related
to the semantics of the routing language; they are not merely implementation details
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p lEi lI jNetwork message:
(lE BE s) ∈W

Metric for prefix p:
s ∈ S

Metric for prefix p:
(lI BI (lE BE s)) ∈ S

TYPES

S = type of metrics
L = type of labels

LE = type of export labels
LI = type of import labels
W = type of messages on the wire

FUNCTIONS

B ∈ L× S→ S (policy application)
BE ∈ LE × S→W (export policy application)
BI ∈ LI ×W → S (import policy application)
� ∈ LI × LE → L (policy reconstruction)

CONSISTENCY

(lI � lE) B s = lI BI (lE BE s)

Figure 5.2: The components of a configuration algebra.

of the routing algorithm. We therefore consider it important to add this export/import
interface policy to our model of routing languages.

When extending the metarouting system in this way, it is also important not to sacrifice
the benefits that metarouting provides. In particular we want the ability to reason
algebraically about the routing language and routing algorithm, and confidence that
our implementations correctly match the theoretical model.

5.1.2 Algebraic definition

This section defines the algebraic model of what we will call a configuration algebra:
an extension of the earlier definition of routing algebra to support the separation of
export and import policies, while preserving a bridge between the two algebra models
that allows us to re-use the existing metarouting work to construct languages with
guaranteed convergence properties.
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Our original model used routing algebras with the four components

(S, L, �, B).

Figure 5.2 illustrates the components of our configuration algebras. We retain S as
the metric type – this is the value stored in routing tables inside each router and is
unaffected by our new model. We also make no changes to � – route preferences
remain the same. We split the arc label type L into two separate types: the export label
LE and the import label LI . Similarly we split the policy application function B into
export policy application BE and import policy application BI . The type W corresponds
to the data type that is shared over the wire by the vectoring protocol; this may differ
from S.

To preserve the bridge between the new configuration algebra and our old routing al-
gebra model, we include the original L and B as part of the configuration algebra. We
add an operation � that can reconstruct an arc label from adjacent interface configura-
tions, and we insist on consistency: the equation

(lI � lE) B s = lI BI (lE BE s)

must be valid for all label and metric values. In other words, we can reconstruct a label
l = lI � lE from bits of configuration data at each end of a link, and the metric

s′ = l B s

will always be the same as first computing

w = lE BE s

and then computing
s′ = lI BI w.

We thus have a configuration algebra of the form

((S, L, �, B), (LE, LI , W, BE, BI , �))

and can represent a network as a graph (V, E) and a weight function w : E→ (LE× LI)
(each edge has an export/import pair of labels). We can implement a routing algorithm
based on generalised distributed Bellman-Ford which computes lI BI (lE BE s) when
a metric is advertised over a link, with half the computation being performed by one
router and half by the other. Because of the consistency constraint, we can map this
network and algorithm onto a network with a weight function

w′(e) = lI � lE where (lE, lI) = w(e)

and an algorithm which performs the traditional DBF computation l B s, with the
guarantee that these two methods will produce the same result after every step. Any
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properties proved of convergence behaviour with the conceptual arc configuration will
therefore apply equally to the implementation of the interface configuration.

Although it is trivially possible to construct a consistent configuration algebra for any
given LE, LI , BE, BI (just choose L = LI × LE and define � and B such that lI � lE =
(lI , lE) and (lI , lE) B s = lI BI (lE BE s)), the challenge is to construct ones for which we
still can automatically infer the algebraic properties of (S, L, �, B).

For example, consider the routing algebra that is a direct product of two shortest-paths
algebras

(N+, N+, ≤, +)× (N+, N+, ≤, +).

Each component algebra is increasing (s < l + s), so the direct product is also increasing.
Now imagine we want to specify the first component on export and the second on
import, but perform both additions on import:

S = N+ ×N+

LE = N+

LI = N+

W = N+ ×N+ ×N+

lE BE (sa, sb) = (sa, sb, lE)
lI BI (wa, wb, lE) = (lE + wa, lI + wb).

We cannot say that BE or BI are increasing, since the order � cannot be applied to
values of type W. Therefore we cannot use their properties to determine that their
composition lI BI (lE BE s) is increasing. We could prove this property by hand or
perhaps with an automated theorem prover, but these methods are slow and may not
find an answer. To avoid this problem of composing B from BI and BE and having to
determine its properties afterwards, we will instead construct all of the configuration
algebra’s components in parallel so we can use our standard property inference rules
to understand the final result.

5.1.3 Base configurations

To build provably-correct consistent configuration algebras, we will extend RAML’s
approach of applying a pre-defined set of constructors to simpler routing language
expressions, constrained only by algebraic properties. Given a routing algebra A =
(S, L, �, B) we can define functions to generate the basic configuration algebras,
listed in Figure 5.3.

For example, if A = (N+, N+,≤, +) then Cimport only(A) = (1, N+, N+, right, +, left).
With this constructor, LE is the unit type and BE is effectively the identity function over
S; all the work is shifted to the import interface. Conversely, Cexport only shifts L and B

to the export interface, with the identity function on import.
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C = ( LE, LI , W, BE, BI , � )
Cimport only(A) = ( 1, L, S, right, B, left )
Cexport only(A) = ( L, 1, S, B, right, right )

Cexport import(A) = ( S, S, S, B, B, B )
Cleft(A) = ( 1, S, 1, left, left, left )

Cright(A) = ( 1, 1, S, right, right, right )

Figure 5.3: Basic configuration algebra constructors.

Cexport import copies L and B to both interfaces: with the shortest paths algebra this
means both sides of the link can specify a value to add to the metric, equivalent to a
single addition of the sum of those values. This requires L = S for the types to work
correctly.

Cleft replaces the metric with a value that is configured on the import interface. The
algebra Cleft(S, L, �, B) is equivalent to Cimport only(S, S, �, left) in its configuration
and its result, and may seem redundant, but it differs in one detail: the type of data sent
over the wire, W, becomes the unit type 1. This makes it valuable in cases where the old
metric value should be hidden from the importing router, as with BGP’s LOCAL PREF,
as well as being a minor performance improvement.

Cright has no labels and passes the metric through unchanged. Cright(S, L, �, B) is
equivalent to Cimport only(S, 1, �, right) and is redundant, but is included here for
symmetry.

This set of basic configuration algebras is not necessarily complete but it covers the
most important uses discussed in Section 5.1.1; other configuration algebras may be
useful in certain situations but will follow the same patterns.

To safely use the C returned by these constructors in a configuration language (A, C),
we want to ensure the consistency property is satisfied.

To see that (A, C) with A = (S, L, �, B) and C = Cimport only(A) is consistent, we can
use the mapping lI = l and lE = ⊥. This mapping of interface labels to arc labels is a
bijection, but in general any function (LI , LE) → L will suffice (there may be some arc
labels that cannot be implemented with interface labels). Then

(lI � lE) B s = (l left ⊥) B s
= l B s
= l B (⊥ right s)
= lI BI (lE BE s)

so the consistency equation holds.
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We can similarly show that

Cexport only(A) is consistent when A = (S, L, �, B)
Cleft(A) is consistent when A = (S, S, �, left)

Cright(A) is consistent when A = (S, 1, �, right).

Further, we can show that Cexport import(A) is consistent when A = (S, S, �, B) if and
only if B is associative (s1 B (s2 B s3) = (s1 B s2) B s3 for all s1, s2, s3 ∈ S). In this case
the label mapping is not a bijection: for example if A = (N+, N+, ≤, +), the lowest
interface labels give l = lI � lE = 1 + 1 = 2, and it is impossible to implement the arc
label l = 1.

Note that in all cases except for Cimport only and Cexport only, the consistency is with
a restricted subset of routing algebras. To implement this in RAML with automatic
correctness guarantees, we will need to either design any RAML extensions carefully
to make the algebra have the necessary form by construction, or else verify the form
and report an error if it is incorrect. Since the restrictions in these constructors are either
requiring equality between sets or operators, or requiring algebraic properties (namely
associativity) that RAML already computes, this verification is straightforward.

5.1.4 Configuration constructors

The base configurations introduced in the previous section could be applied to a com-
plex routing algebra (such as a BGP-style lexicographic product of attributes) as a
whole, but this provides very little flexibility. To better match the policy configuration
style of BGP, it is important to be able to choose import/export configuration indepen-
dently for each attribute before combining them into the product. We will therefore
take our existing constructors over routing algebras, and extend them to work over
configuration algebras.

First we define the product of the C component of a configuration algebra (A, C):

(LE1, LI1, W1, BE1, BI1, �1)
× (LE2, LI2, W2, BE2, BI2, �2)
= (LE1 × LE2, LI1 × LI2, W1 ×W2, BE, BI , �)

(lE1, lE2) BE (s1, s2) = (lE1 BE1 s1, lE2 BE2 s2)
(lI1, lI2) BI (w1, w2) = (lI1 BI1 w1, lI2 BI2 w2)
(lI1, lI2)� (lE1, lE2) = (lI1 �1 lE1, lI2 �2 lE2)

Now we can define direct product and lexicographic product of configuration algebras,
which differ only in the � component of their routing algebra:
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(A1, C1)× (A2, C2) = (A1 × A2, C1 × C2)
(A1, C1) ~× (A2, C2) = (A1 ~× A2, C1 × C2)

With these product constructors, the configuration semantics of each component is
preserved. Given our example of A = (N+, N+, ≤, +), the configuration algebra

(A, Cexport only(A))× (A, Cimport only(A))

will have LE = N+ × 1 configuring the first component on export, and LI = 1×N+

configuring the second on import.

The function union constructor is slightly more complex. Recall that this combines two
algebras with the same S and �, merging their distinct label types (and their corre-
sponding B) in a disjoint union, for example supporting links tagged as either external
or internal in a region-based algebra. We will define this as

(A1, C1) ] (A2, C2) = (A1 ] A2, C1 ] C2)

where ] applied to routing algebras is as defined earlier, and ] applied to the config-
uration component is

(LE1, LI1, W1, BE1, BI1, �1)
] (LE2, LI2, W2, BE2, BI2, �2)
= (LE1 ] LE2, LI1 ] LI2, W1 ]W2, BE, BI , �)

inl(lE1) BE s = inl(lE1 BE1 s)
inr(lE2) BE s = inr(lE2 BE2 s)

inl(lI1) BI inl(w1) = lI1 BI1 w1

inr(lI2) BI inr(w2) = lI2 BI2 w2

inl(lI1) BI inr(w2) = error
inr(lI2) BI inl(w1) = error
inl(lI1)� inl(lE1) = inl(lI1 �1 lE1)
inr(lI2)� inr(lE2) = inr(lI2 �2 lE2)
inl(lI1)� inr(lE2) = error
inr(lI2)� inl(lE1) = error

Labels LE, LI and wire metrics W are each tagged with either inl or inr (injected into
left or right side of the disjoint union type). BE produces a wire metric with the same
tag as the export label. BI then requires the wire metric to have the same tag as the
import label; if not (e.g. one router has tagged a link as ‘external’ while another has
tagged the same link as ‘internal’) then it is impossible to perform the computation of
BI , so this is an error. This possibility of inconsistency is an inevitable consequence of
spreading data across a distributed system; we discuss a number of ways to prevent or
to handle the error case later in this chapter.
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We will also need to extend addtop to apply to configuration algebras. This adds a
new constant value c that is least preferred in the order, and acts as an annihilator
(c B s = l B c = c): a link labelled with c will cause the route’s metric to become and
remain c forever, effectively filtering out the route. Filters on export and import can
both be useful; we could extend addtop to configuration algebras by defining variants
that allow filters on just one or the other, but this would be needless complexity, so
instead we extend the constructor to allow either (or both) of the interface labels to
be c and filter out the route. The functions BE, BI and � are all extended to simply
propagate c.

addtop(c, (LE, LI , W, BE, BI , �)) = (LE ∪ {c}, LI ∪ {c}, W1 ∪ {c}, B′E, B′I , �′)

c B′E s = c
lE B′E c = c
lE B′E s = lE BE s
c B′I w = c
lI B′I c = c

lI B′I w = lI BI w
c�′ lE = c
lI �′ c = c

lI �′ lE = lI � lE

All of these constructors must preserve the consistency condition, so that we can en-
sure the consistency of any configuration algebra specification constructed from the
consistent base configurations. This is straightforward as long as the error case in the
function union is avoided.

5.2 Extending RAML

There are several different ways we could extend RAML to construct configuration
languages using the concepts defined above. This section will detail two models: a
tightly coupled approach where the configuration is integrated with the routing lan-
guage specification, and a loosely coupled approach where the configuration is de-
termined by external annotations. The difference in these two approaches is purely
one of metalanguage design – both will be translated into the same algebraic model
of configuration languages, but it is useful to contrast the design choices that can be
made.
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raml-base ::= int min plus(erl-ty-int-unbounded)
| int range min plus(num, num)
| int max min(erl-ty-int)
| paths(erl-ty)
| strata(num, num, num. . .)

ramlc-exp ::= raml-base
| add top(name, ramlc-exp)
| lex product(name=ramlc-exp, name=ramlc-exp, . . .)
| function union(name=ramlc-exp, name=ramlc-exp, . . .)
| right(ramlc-exp)
| left(ramlc-exp)
| export(ramlc-exp)
| export import(ramlc-exp)

Figure 5.4: Grammar for RAMLC .

5.2.1 Tightly-coupled syntax

We will define a new version of RAML and name it RAMLC , with extended syntax
to define configuration algebras. The grammar for the metalanguage is defined in
Figure 5.4. Compare this to the syntax in Section 3.2 – we have kept the same raml-base
but have extended raml-exp to include export and export import keywords.

We need to replace the old semantic function Jraml-expK, which gave a routing alge-
bra, with a new semantic function Jramlc-expKC giving a configuration algebra. An
expression e will now map to JeKC = ((A, P), C), where A = (S, L, �, B) is the
routing algebra as before, P is the set of algebraic properties for A, and C is a tuple
(LE, LI , W, BE, BI , �) capturing the other components of a configuration language
as described in Figure 5.2. We want to guarantee consistency by construction for any
expression in ramlc-exp.

We define the algebraic semantics in Figure 5.5. (Algebraic property inference rules are
the same as with the original RAML, and not repeated here.)

These constructors can be grouped into four categories. First, any raml-base is given
import-only configuration semantics. This is reasonable default behaviour, and it al-
lows any RAML specification to be interpreted as RAMLC with no changes.

Second, left applies the left routing algebra constructor at the same time as applying
Cleft for the configuration. The consistency condition for Cleft requires the algebra to
be of the form produced by left, so this is guaranteed by performing both operations
together. right acts similarly.

Third, lex product and function union combine the configuration components C1, C2
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Jraml-baseKC = ((A, P), Cimport only(A))
where (A, P) = Jraml-baseK

Jadd top(n, e)KC = ((addtop(n, A), {. . .}), addtop(n, C))
where ((A, P), C) = JeKC

Jlex product(n1=e1, n2=e2)KC = ((A1 ~× A2, {. . .}), C1 × C2)
where ((A1, P1), C1) = Je1KC

((A2, P2), C2) = Je2KC

Jfunction union(n1=e1, n2=e2)KC = ((A1 ] A2, {. . .}), C1 ] C2)
where ((A1, P1), C1) = Je1KC

((A2, P2), C2) = Je2KC

Jright(e)KC = ((right(A), {. . .}), Cright(right(A)))
where ((A, P), C) = JeKC

Jleft(e)KC = ((left(A), {. . .}), Cleft(left(A)))
where ((A, P), C) = JeKC

Jexport(e)KC = ((A, P), Cexport only(A))
where ((A, P), C) = JeKC

Jexport import(e)KC = ((A, P), Cexport import(A))
where ((A, P), C) = JeKC

Figure 5.5: Algebraic semantics for RAMLC .

of the sub-algebras as defined in Section 5.1.4. Similarly, add top adds the constant
value to its sub-expression’s algebra. These are the only expressions that use the Cs to
build more complex configuration algebras, instead of discarding them and defining a
new C based only on the A components.

Finally, export and export import replace only the C component and leave A un-
changed; these are taking a routing algebra and moving its configuration to different
sides of the network link without affecting the semantics of the routing algebra. While
export can be used on any arbitrary routing algebra A, export import will require the
RAML compiler to verify that the algebra has L = S and that it is associative.

We must also define the ERL semantics Lramlc-expMC of a configuration language ex-
pressed in RAML. This is generally a straightforward mapping, mirroring the alge-
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braic semantics – for example we can define Lexport(e)MC as

sig = LeMCsig
lbl = LeMClbl
ord = LeMCord
tfm = LeMCtfm
wir = LeMCsig
lbl_e = LeMClbl
lbl_i = TyUnit

tfm_e = LeMCtfm
tfm_i = fun (li, s) -> s

rec = fun (li, le) -> le

where sig, lbl, ord and tfm have the same meanings as with the original RAML def-
inition in Section 3.2. The new values are the wire metric wir (W), the policy recon-
struction function rec (�), and the import/export variants of label and policy applica-
tion, which are all implementations of the corresponding component of the algebraic
semantics. A typical distributed vector routing algorithm will never use the code gen-
erated for lbl, tfm or rec, but we include them to support the recursive definition of
semantics.

We now return to the scoped product example of Section 3.3.3. We want to split the
computation associated with external links in a BGP-like manner: the ecomm and epath

attributes should be computed on export, while the idist and ipath should not be
transmitted outside the region and should be replaced by new values on import. On
internal links, ipath is computed on import, but both import and export interfaces can
add a cost to idist. We accomplish this in Figure 5.6 by using the new operations of
the language (in bold).

We can apply the algebraic semantics defined earlier to extract the behaviour of the
two policy application functions, BE and BI . First we handle the annihilator value W

(expressed as ∞):
∞ BE s = ∞

lE BE ∞ = ∞
∞ BI w = ∞
lI BI ∞ = ∞

Next we have the case where the labels represent an internal link:

inl(⊥, ⊥, v, ⊥) BE (ec, ep, id, ip) = inl(ec, ep, v + id, ip)
inl(⊥, ⊥, v, (i, j)) BI inl(ec, ep, id, ip) = (ec, ep, v + id, (i, j) Bpaths ip)

Next we have labels for an external link:

inr(x, (m, n), ⊥, ⊥) BE (ec, ep, id, ip) = inr(x Bcpp ec, (m, n) Bpaths ep, ⊥, ⊥)
inr(⊥, ⊥, v, l) BI inr(ec, ep, ⊥, ⊥) = (ec, ep, v, l)
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add_top(W,

function_union(

internal =

lex_product(

ecomm = right(cpp),

epath = right(paths(TyIntNonNeg)),

idist = export_import(int_min_plus(TyIntNonNeg)),

ipath = paths(TyIntNonNeg)

),

external =

lex_product(

ecomm = export(cpp),

epath = export(paths(TyIntNonNeg)),

idist = left(int_min_plus(TyIntNonNeg)),

ipath = left(paths(TyIntNonNeg))

)

)

Figure 5.6: Scoped product specification with configuration constructors.

Finally we have the case where the two sides of the link disagree on whether it is inter-
nal or external; our semantics for function union considers this to be an error. One op-
tion would be for the routing algorithm implementation to detect the runtime error and
report an error message to the administrator and tear down the incorrectly-configured
connection over that link. A more robust option would be for the implementation to
verify consistency when setting up the connection between routers, and refuse to con-
nect unless the configuration is correct, so the error cases can never be encountered at
runtime. Another alternative would be to return ∞ for errors:

inl(⊥, ⊥, v, (i, j)) BI inr(ec, ep, ⊥, ⊥) = ∞
inr(⊥, ⊥, v, l) BI inl(ec, ep, id, ip) = ∞

This could be achieved by special-casing the semantics of the RAML expression pattern
“add top(c, function union( . . . ))” to return c in error cases.

5.2.2 Loosely-coupled syntax

The definition in the previous section is a direct extension of the RAML syntax from
routing algebras to configuration algebras. However, it introduces a number of practi-
cal problems due to conflating the specification of the routing algebra and its configu-
ration behaviour.
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When we compile a specification, the compiler must compute and verify the algebraic
properties of the routing algebra. When it finds errors, it will report them in terms
of the routing algebra (e.g. “this specific example of a label L violates the increasing
property”), not the configuration algebra (“this combination of LE and LI violates the
property”); in general it is not possible to map from arc labels to interface labels. To
understand the errors, users will therefore need a mental model corresponding to the
routing algebra – we cannot hide that concept from them, but the syntax fails to make
it explicit, potentially increasing confusion.

Another issue is that routing algebra correctness relies on it being used identically
across a whole network, whereas configuration algebra correctness depends only on
agreement between a pair of consenting peers – the splitting of labels across export and
import interfaces can be different for every link. A protocol designer will have to write
down a specific routing algebra and tell every router to use it, but if that specification
is inextricably linked with configuration details, the protocol designer will have been
forced to decide those configuration details and take power away from each pair of
peers. Instead, the designer should just specify the routing algebra by itself, and peers
should independently specify configuration algebras that are compatible with the rout-
ing algebra. Determining “compatible” based on the compiled form of a specification
is hard – instead, as with proving correctness, we should guarantee compatibility by
construction, so that we can produce multiple configuration algebras that are known
to implement the same routing algebra.

One way to do this is to define the configuration algebra as a RAML (routing algebra)
specification plus a separate list of annotations. We will need to define the semantics
of this so that any valid set of annotations combined with a routing algebra will give a
compatible configuration algebra.

5.2.3 Loosely-coupled syntax specification

We can use a simple syntax to express external annotations over a RAML specification.
The RAML syntax defines a tree structure, and every node in the syntax tree with
two or more child expressions has labelled branches: these are the lex product and
function union terms. Other terms such as add top and left have a single unlabelled
child expression.

For configuration, we don’t need to be able to annotate every node in the syntax. As
with the semantics for RAMLC , left and right will ignore the configuration compo-
nent of their child expression and replace it with Cleft(A) or Cright(A), so there is no
value in giving configuration annotations for the child expressions. However, add top

extends its child’s configuration; given a configuration algebra ((A, P), C) there is a
useful distinction between Cexport only(addtop(n, C)) (allowing the filtering constant n
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Figure 5.7: Annotatable syntax tree for scoped product example.

only on export) and addtop(n, Cexport only(A)) (allowing n on both interfaces). We will
therefore add an artificial label “noninf” for the child expression of add top, allowing
it to be addressed directly.

Now any node that may need annotations can be addressed by a sequence of labels.
The annotation syntax then consists of associating a configuration keyword (export,
import, or export import) with a label sequence.

Figure 5.7 illustrates the syntax tree with labelled nodes for our scoped product exam-
ple. We will express annotations in the following form:

export_import(noninf.internal.idist)

export(noninf.external.ecomm)

export(noninf.external.epath)

We want to use these annotations in our definition of the semantics of an annotated
RAML specification. We therefore start by converting the annotation syntax into a
form that will simplify our definition. In this form, an annotation is either a configura-
tion keyword or a named map of annotations. We represent a named map as a set of
(name, value) tuples, where the name is required to be unique within its set.
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The interpretation of the example above is:

{
(“noninf”, {

(“internal”, {
(“idist”, export import)
}),
(“external”, {

(“ecomm”, export),
(“epath”, export)
})
})
}

Parsing into this form is straightforward; we do not define it here.

We use exactly the same RAML specification language as defined in Section 3.2. We
make use of exactly the same Jraml-expK semantics over RAML syntax. However, we
define a new augmented semantics Jraml-exp; annotKA over RAML syntax plus config-
uration annotations, which gives either an error or a configuration algebra.

We first define semantics for arbitrary RAML syntax combined with the standard an-
notation keywords:

Je; exportKA = ((A, P), Cexport(A))
Je; importKA = ((A, P), Cimport(A))

Je; export importKA = ((A, P), Cexport import(A))
where (A, P) = JeK

We also define the augmented semantics of the RAML constructors, in Figure 5.8. The
nested constructors (lex product and function union) ‘unwrap’ the annotations at
the same time as their named arguments. The annotations and RAML syntax both
define a tree structure, and we are recursing down both trees in parallel. Note that
we use the ‘import’ configuration semantics when only one of the names is present
in the annotation. This is implementing a default to simplify the specifications: the
annotations need only refer to a subset of the fields of the product or union, and the
unannotated branches of the routing language will simply use ‘import’.

For lex product, it is possible that none of the above patterns will match. Our anno-
tations are defined to be either a keyword, or a non-empty set of named annotations.
The only case that will not match any patterns is when there is a set with at least
one named annotation which does not match either of the names in the lex product.
(There may or may not be other correctly-named annotations in the set.) This indicates
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Jadd top(n, e); {(“noninf”, c)}KA = ((addtop(n, A), {. . .}), addtop(n, C))
where Je; cKA = ((A, P), C)

Jlex product(n1=e1, n2=e2); {(“n1”, c1), (“n2”, c2)}KA = ((A1 ~× A2, {. . .}), C1 × C2)
where Je1; c1KA = ((A1, P1), C1)

Je2; c2KA = ((A2, P2), C2)

Jlex product(n1=e1, n2=e2); {(“n1”, c1)}KA = ((A1 ~× A2, {. . .}), C1 × C2)
where Je1; c1KA = ((A1, P1), C1)

Je2; importKA = ((A2, P2), C2)

Jlex product(n1=e1, n2=e2); {(“n2”, c2)}KA = ((A1 ~× A2, {. . .}), C1 × C2)
where Je1; importKA = ((A1, P1), C1)

Je2; c2KA = ((A2, P2), C2)

Figure 5.8: Augmented semantics of RAML constructors with configuration annota-
tions. function union is defined analogously to lex product.

a clear error in the annotation specification, referring to non-existent properties, so the
specification will be rejected and the incorrect name will be reported to the user. Sim-
ilarly, an add top without either a keyword or a set containing the named annotation
“noninf” will be an error due to an incorrect name.

The left and right constructors do not have any special semantics defined: their con-
figuration annotation must be a keyword, not a set, and it will be applied to the whole
of left(JeK). The tightly-coupled syntax in the previous section allowed configuration
modes to be applied to the nested expression e, but these were discarded when ap-
plying the left constructor – it reconstructed the configuration algebra based solely
on its argument’s routing algebra and ignored the rest of the argument’s configuration
algebra. It is therefore no loss that we cannot express annotations on the nested expres-
sion in this new syntax – in fact it simplifies the language by disallowing confusingly
meaningless specifications.

From this definition of semantics, it is easy to show that for any RAML specification
e and configuration annotations c, we get Je; cKA = (JeK, C) for some C. This means
that if we have two sets of annotations for the same RAML syntax e, they will both
produce configuration algebras that are consistent with the same routing algebra JeK.
This satisfies our goal of allowing a single global routing algebra specification to ensure
correct operation of a network, with the potential for local choices of configuration
between each pair of routers.
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5.3 Non-local configuration

So far, we have split the configuration of a link into two halves – the export policy LE

and computation BE on one side, the import policy LI and computation BI on the other
– and assumed that the policies will be specified by configuration files on whichever
router performs the corresponding computation. This is the natural way to configure
a decentralised, distributed network, and is the standard behaviour for all common
vector routing protocols. However, in some cases it can be valuable to expand this
model and allow a router to specify policy that will be computed by a different router.

There is a recent extension to BGP called Outbound Route Filtering (ORF), which is a
step in this direction: part of the policy for a link is specified on the importing router,
for which the computation is performed the exporting router. This alters the tradeoffs
between the goals we listed in Section 5.1.1. In particular the importing router can
specify a set of filters on address prefixes, giving it administrative control over what
routes it will accept, but they are computed on the exporting router, giving increased
performance due to reduced communication overhead.

BGP ORF special-cases certain types of filtering – most aspects of policy are stuck on
the same router for configuration and computation, and the ORF approach is not scal-
able to handling more complex policy due to its low-level nature and awkward integra-
tion with policy languages. We believe there may be value in permitting much more
flexibility in this area, and our algebraic model provides a powerful way to reason
about this at a higher level. This section discusses a modest extension to the metarout-
ing system to support a superset of the ORF feature.

5.3.1 BGP Outbound Route Filtering

There are currently two RFCs related to BGP outbound route filtering: RFC 5291 [CR08]
defines a generic mechanism to implement filters as an extension to the BGP protocol,
while RFC 5292 [CS08] defines a specific type of filter based on address prefix match-
ing. We can summarise the behaviour of RFC 5291 as follows:

Two BGP neighbours advertise their ORF capabilities as part of the handshake process
when first connecting, listing the address families (e.g. IPv4 or IPv6) and ORF types
(e.g. address prefix matching) that they support. The intersection of the advertised
features determines what will be allowed during this session.

Either BGP speaker may send a ROUTE-REFRESH message (or series of messages)
that is extended to contain a list of ORF entry changes (additions and removals) for its
neighbour to apply. Each ORF entry specifies an address family and ORF type, a PER-
MIT/DENY flag, and a type-specific value. Each router stores the set of ORF entries
advertised by its neighbour and updates the set in response to these messages. After
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performing the standard BGP decision process to determine which routes to advertise,
a route is matched against all ORF entries to get a PERMIT or DENY result, which
determines whether it will be advertised to the neighbour. (The ORF type determines
how to choose the result if the route matches multiple ORFs of that type. If it matches
ORFs of different types, DENY takes precedence over PERMIT.)

RFC 5292 defines one specific ORF type for address prefix matching. The ORF entry
value contains a prefix (e.g. 192.168.0.0/16 for IPv4 address families), and optional
minimum and maximum lengths. A route containing a destination address prefix will
match the ORF if it is equally or more specific than the ORF prefix (e.g. 192.168.0.0/16
will match a route to 192.168.1.0/24, but not a route to 192.0.0.0/8 or to 10.0.0.0/24),
and if its destination prefix length is between the specified minimum and maximum.
The ORF entry value also contains a sequence number which is assumed to be unique;
if multiple ORF entries match then the lowest sequence number determines whether
to PERMIT or DENY the route.

From this, we can see that the ORF mechanism is designed very specifically for filter-
ing: it cannot be used for general policy application without significant design changes,
as it is applied after the BGP decision process has completed. Also, the mechanism is
very rigid: the address prefix matching works for the cases that the protocol exten-
sion designers considered to be common and useful, but there is no way to match
against more complex prefix patterns and (more importantly) no way to look at any
other route attributes. Given the very low-level nature of ORF, with the functionality
being defined in octet layouts and verbose prose, experimenting with new features is
a time-consuming process.

Our metarouting approach can be extended to incorporate this functionality and to
provide much greater flexibility with much less effort.

5.3.2 Extending metarouting

For the same reasons as with our original configuration algebras in this chapter, we
want an algebraic model that relates back to simpler models that we can already anal-
yse. In this case, the computational aspect of the language is exactly the same as our
original languages: the exporting router performs some computation over the route
metric and some configuration data, while the importing router does the same. The
only difference is that the protocol requires the configuration data used by each com-
putation to come from two sources: part is local, part is remote.

Some configuration data may be used both locally and remotely: for example, an im-
porting router’s route filter might be executed remotely on the exporting router to
improve performance, but often it should also be executed on the importing router
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Figure 5.9: Associating policy labels with interfaces configured by (a) the node con-
nected directly to that interface, or (b) split into two parts configured by both nodes on
the arc. Shading indicates which node controls which part of the configuration data.

to guarantee correct operation even if the exporting router fails to apply the policy
correctly (due to software bugs or an intentional attack).

As one of our goals listed earlier was to support information-hiding between neigh-
bours, we should not expect them to share the entirety of their policy with each other.
Instead, only the minimal amount necessary for the neighbour’s computation should
be shared.

We illustrate this model in Figure 5.9. The original configuration algebras are defined
purely locally – the labels on each interface are controlled by the associated router. We
will extend this so control of the label on an interface is shared by both routers on that
link. This shared model can be mapped back onto the local model, providing a path to
guarantee correct operation of the protocol, by merging the local and remote parts of
the label on each interface into a single label.

We define our new shared configuration algebra as

((S, L, �, B), (LE, LI , W, BE, BI , �), (DE, DI , RE, RI , πE, πI , �E, �I))

which consists of the old local configuration algebra, plus the exporting router’s con-
figuration data DE and importing router’s configuration data DI ; the exporting router’s
remotely-computed configuration data RE and importing router’s RI ; the functions π

that project out the remote component R of the configuration data D:

πE : DE → RE

πI : DI → RI
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and two new label reconstruction functions

�E : DE × RI → LE

�I : RE × DI → LI

with the appropriate consistency constraint.

Now we need to extend our set of constructors to work with this new language, guar-
anteeing the consistency constraint.

In the simplest case we can set DE = LE, DI = LI , RE = RI = 1, and define dE �E rI =
dE and rE �I dI = dI . All data will be defined and used locally, as with our local
configuration algebra. This will be the default behaviour for a language specification.

We can add some new constructors that make use of remote configuration data:

C = ( LE, LI , W, BE, BI , �, DE, DI , RE, RI , πE, πI , �E, �I )
Cimport(A) = ( 1, L, S, right, B, left, 1, L, 1, 1, 1, 1, left, right )

Cshift import(A) = ( L, 1, S, B, right, right, 1, L, 1, L, 1, id, right, left )
Cdupe import(A) = ( L, L, S, B, B, left, 1, L, 1, L, 1, id, right, right )

These three constructors all have the same configuration data DE, DI . They also have
the same underlying algebra (S, L, �, B). What differs is how the configuration data
is split into the labels LE and LI , and how those labels are computed with. The first
case is the original local application. Cshift import leaves the configuration on the im-
porting router, but shifts the application entirely onto the exporting router. Cdupe import

performs the application B on both routers – this imposes the additional requirement
that B is idempotent in order to preserve our consistency constraint. These construc-
tors provide functionality similar to BGP ORF, allowing the computation to be shifted
without changing the configuration input or the global behaviour.

We can implement this using exactly the same annotation model as before; we simply
need to extend the semantics and add the new constructors following the same pattern,
and do not go into the details here.

We want to prove that these constructors all implement (S, L, B) correctly given the
same input (di, de), i.e. that they are all equivalent except for the internal communica-
tion and computation details.

For any language, we have:

L B s = (LI � LE) B s
= LI BI (LE BE s)
= ((πE(de)�I di) BI ((de �E πI(di)) BE s)
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For Cimport we have:

((πE(de)�I di) BI ((de �E πI(di)) BE s)
= ((1 right di) B ((de left 1) right s)
= di B s

For Cshift import we have:

((πE(de)�I di) BI ((de �E πI(di)) BE s)
= ((1 left di) right ((de right di) B s)
= di B s

For Cdupe import we have:

((πE(de)�I di) BI ((de �E πI(di)) BE s)
= ((1 right di) B ((de right di) B s)
= di B (di B s)
= di B s iff B idempotent

These all produce the same behaviour for the same input di and s, so they are all equiv-
alent implementations of the routing algebra and make no difference to how the net-
work will be configured by users, but they can make an important difference to con-
cerns such as performance, security, and information-hiding.

5.4 Remaining issues

This chapter aimed to bridge the gap between routing algebras based on arc labels,
and distributed implementations where policy is applied at interfaces. The algebraic
models and extensions to the metarouting specification languages show that much
of the desired behaviour can be handled in this way. However, given the scope of
the problem, there are a number of details that remain unresolved; this section will
describe several issues that remain.

5.4.1 Attribute naming

In RAML and ERL, we allow the fields of products and disjoint unions to have human-
readable names. This is important for readability of the routing language specifica-
tions, and also for use in the syntax for router configurations. In the scoped product
example of Section 3.3.3, we use the specified names such as “epath” for both metric
and label types. However, this is an over-simplified approach that can cause unin-
tuitive behaviour in configuration syntax: the epath field of a metric is (as the name
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suggests) a path, but the epath field of a label is only a single element that will be
prepended to the path. It may be valuable to allow a routing language specification to
rename this field to a different name (perhaps “enum”) in the label type independently
of the metric type, similarly to how BGP uses the terms “AS number” (in configura-
tion) and “AS path” (in metrics). As the names are ignored entirely by the algebraic
semantics of a RAML or ERL expression, this renaming will be safe and have no effect
on the behaviour of the protocol but may make its implementation easier to configure.

5.4.2 Per-node values

Our model allows every interface to be configured independently. However, in some
protocol designs it may be valuable to have parts of policy that are shared by all inter-
faces on a router – for example, BGP is designed with the assumption that AS numbers
are assigned to routers, and used equally for routes received or sent on any interface,
and does not permit a single router to use different AS numbers over different links.
This is not a requirement for convergence of the protocol to a stable routing solution,
but it is an important part of the intended semantics of the protocol.

To handle per-node labels as well as per-interface labels, we could extend the configu-
ration algebras with a new per-node label type LN and extend the binary operators BE,
BI to take a third argument of type LN to use in their computation. This would allow
the language specification to define that certain fields, such as the enum node identifier,
are to be configured once and used for all interfaces on that router.

5.4.3 Additional constraints

More complex constraints than per-node labels may be useful in some cases, to enforce
the desired semantics of the protocol design and to detect erroneous configurations; the
algebraic properties can only guarantee that the protocol will converge, not that it will
converge to what the designers wanted. For example, our scoped product example
allows any link to be arbitrarily specified as either internal or external. BGP instead
ties this to the AS numbers of the routers on the link: if they are the same AS then it
is an internal link (IBGP), else it is external (EBGP). This provides some guarantees
of transitivity over the global network configuration (if A to B is internal, and B to
C is internal, then A to C must also be internal). In a routing algorithm such as gBGP
with persistent sessions between routers (unlike gRIP), it should be feasible to design a
system that compares the relevant policy labels when setting up the session and aborts
if they violate some arbitrary constraint. However, it is unclear exactly what (if any)
types of constraint would be worthwhile in practice, and we do not explore this further.
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5.4.4 Risks of shared configuration

In Section 5.3 we argued that moving computation can help performance, for example
by filtering out routes before needlessly transmitting them over the network. However,
there is a danger that the cost of the filtering may outweigh the benefits, particularly if
a highly-connected router has many neighbours that all offload complex filters onto it
and overload its processing capabilities.

To mitigate this risk, we could rely on network operators to only agree to use config-
uration languages with very simple forms of offloaded computation (e.g. only permit
filters, and only filters that can be implemented as an efficient prefix-tree lookup or
hashed attribute value lookups; don’t allow large sets of arbitrary AS path regular ex-
pressions that could be very expensive to compute). We could also provide tools to
estimate the worst-case computation cost of a configuration language, by analysing
the generated intermediate code, to help operators make these decisions.
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Route maps

We have modelled the behaviour of sending a metric m over a link as an algebraic
computation m′ = l B m where the label l is part of the network configuration, and the
function B is part of the routing language design. In contrast to this separation, prac-
tical routing protocol implementations support route maps as a way to define functions
as part of the network configuration rather than as part of the routing language.

There are several deployed alternatives for route map configuration with significantly
different syntax (described in the next section), but they are all based on the same
fundamental model of matching a route based on a boolean combination of a pre-
defined set of predicates (such as integer inequalities over metric values, or regular
expression matches over AS path strings, or prefix set membership over destination
addresses) and returning a route with pre-defined operations applied to its properties
(such as prepending values to AS paths, or adding a constant to a metric value). Some
implementations have a set of predicates and operations that are intimately tied to the
details of the routing protocol and the requirements of customers, with a large range
of very specialised features, while some have a more powerful and more generalised
approach.

Route map implementations include restrictions to prevent some violations of pro-
tocol semantics. For example, elements typically cannot be removed from BGP AS
paths (which would break BGP’s loop-prevention mechanism) – the only operation is
to prepend an arbitrary list of new values. However, these restrictions are not univer-
sally applied: RIP route maps are often allowed to replace the metric value with an
arbitrary integer, violating the assumption that loops will always lead to an infinite
metric; similarly BGP local preferences can be set to arbitrary values regardless of the
commercial relationships that the local preference is typically modelling.

Route maps provide a great deal of flexibility and are a critical part of any non-trivial
network configuration, but they complicate the design and analysis of a protocol. In
this chapter we aim to incorporate functionality similar to route maps into the meta-
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routing system without losing the ability to reason about the protocol’s correctness.

First we look at the route map support provided by current protocol implementations,
as an indication of the flexibility that may be important in network design, and also
look at other related work in this area. We then show how to add route maps to our
algebraic model, and what correctness guarantees we can retain. Finally we explore an
implementation of route maps in the metarouting toolkit.

6.1 Survey of implementations

It is important to understand what the concept of “route map” is typically taken to
mean, before we can consider how to implement a similar concept using metarout-
ing. There is no standardisation in this area – routing protocol RFCs leave it as en-
tirely implementation-defined behaviour, and every implementation takes a different
approach. We are not aware of any existing comparative surveys of this topic. This
section therefore gives an initial examination of the route map features and configura-
tion syntax provided by a number of current routing protocol implementations, letting
us determine the scope of their functionality and the common concepts that underlie
them. This information is derived from their user documentation and from the source
code of the open source implementations.

In each case we detail the general shape of route map configurations and their control
flow, and the commands provided by the configuration syntax. To demonstrate that
the different syntaxes provide a similar core of functionality, we express an example
route map in each of the different systems. We also briefly discuss some implementa-
tion details that will be relevant when we consider how to implement route maps in
metarouting.

6.1.1 Cisco IOS and Quagga

The configuration syntax design of Quagga is largely copied from Cisco IOS, so their
high-level concepts and many low-level details are very similar. Our analysis will focus
on Quagga, as the availability of its source code allows a more reliable understanding.

Each route map is given a distinct name, and is written as a sequence of entries. Each
entry is specified with a number to determine its relative order in the sequence. An en-
try contains an unordered set of match statements, an unordered set of set statements,
and some control flow statements. Each match statement is a single predicate over the
route’s properties; if all predicates match then the entry as a whole is considered a
match.
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match interface WORD

match ip address (<1-199>|<1300-2699>|WORD)

match ip address prefix-list WORD

match ip next-hop (<1-199>|<1300-2699>|WORD)

match ip next-hop prefix-list WORD

match metric <0-4294967295>

match tag <0-65535>

set ip next-hop A.B.C.D

set metric <+/-metric>

set metric <0-4294967295>

set tag <0-65535>

Figure 6.1: Quagga RIP route-map command patterns.

If an entry matches, its set statements will be applied. These each perform a modifica-
tion to the route’s properties. The entry may then call another route map (effectively a
function call), continue to the next entry in the current route map’s sequence, jump to
any later entry in the current route map’s sequence, or finish processing the route and
either accept it or reject it (i.e. filtering it out). If an entry does not match, processing
will continue with the next entry in the sequence.

This syntax is optimised for relatively simple cases and cannot practically handle all
logic expressions, given that each entry matches on a conjunction of predicates; in
general an expression can be expanded to disjunctive normal form and then written in
the route map syntax, but with potential exponential expansion.

The list of available match and set commands is determined by the protocol.

Quagga RIP

Figure 6.1 shows the route map commands that Quagga supports for RIP. In addition
to matching and setting the metric values, it can match on other parts of the route’s
properties, in particular its destination prefix and next hop. It also allows the next hop
to be updated – for example if router B receives a route from A, and is going to send
it to C, the default next hop will be B; but if the network operator knows that C can
transmit data directly to A (despite the routing protocol not being run between C and
A directly), the route map could cause the route to be advertised to C with a next hop
of A.

Matching on destination prefix is a very common operation, for example to restrict a
customer to only advertising routes to prefixes that are known to belong to them. The
configuration language provides various ways to define sets of prefixes relatively con-
cisely (e.g. a single command can define the set of about 223 prefixes that are subsets of
10.0.0.0/8 but are not /31 or /32). We can easily reuse this mechanism when extend-
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match as-path WORD

match community (<1-500>|WORD)

match community (<1-500>|WORD) exact-match

match extcommunity (<1-500>|WORD)

match ip address (<1-199>|<1300-2699>|WORD)

match ip address prefix-list WORD

match ip next-hop (<1-199>|<1300-2699>|WORD)

match ip next-hop prefix-list WORD

match ip route-source (<1-199>|<1300-2699>|WORD)

match ip route-source prefix-list WORD

match ipv6 address WORD

match ipv6 address prefix-list WORD

match ipv6 next-hop X:X::X:X

match metric <0-4294967295>

match origin (egp|igp|incomplete)

match pathlimit as <1-65535>

match peer (A.B.C.D|X:X::X:X)

match peer local

set aggregator as <1-65535> A.B.C.D

set as-path prepend .<1-65535>

set atomic-aggregate

set comm-list (<1-500>|WORD) delete

set community .AA:NN

set community none

set extcommunity rt .ASN:nn

set extcommunity soo .ASN:nn

set ip next-hop A.B.C.D

set ip next-hop peer-address

set ipv6 next-hop global X:X::X:X

set ipv6 next-hop local X:X::X:X

set local-preference <0-4294967295>

set metric <+/-metric>

set metric <0-4294967295>

set origin (egp|igp|incomplete)

set originator-id A.B.C.D

set pathlimit ttl <1-255>

set vpnv4 next-hop A.B.C.D

set weight <0-4294967295>

Figure 6.2: Quagga BGP route-map commands

ing route maps into gQuagga: all we want is a predicate that returns whether a given
prefix is in a named set.

Dealing with next hops is a more complex issue since it mixes the concepts of routing
and forwarding; we will return to this later.

Quagga implements route maps by defining each match and set command with a
function to compile the command’s argument string (typically splitting on spaces and
parsing numbers) and a function to apply the compiled arguments to a route. A whole
route map is compiled into a linked list of pointers to each command’s compiled ar-
guments and application function; a route is processed by iterating over the linked list
and calling each function in turn.

Quagga BGP

Quagga’s BGP route maps are fundamentally the same as for RIP, albeit with many
more commands due to the number of route attributes that BGP provides. Figure 6.2
shows the full list.

Communities and AS paths are matched using named (or numbered) sets that are de-
fined outside the route map, similarly to destination prefixes.
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ip prefix-list PLIST permit 10.0.0.0/8

ip prefix-list PLIST permit 192.168.0.0/16

ip community-list CLIST permit 1234:50

ip as-path access-list ASLIST ^1235_

route-map EXAMPLE permit 10

match ip prefix-list PLIST

set local-preference 100

on-match goto 30

route-map EXAMPLE deny 20

route-map EXAMPLE permit 30

match community CLIST

set metric +50

route-map EXAMPLE permit 40

match as-path ASLIST

set metric +50

route-map EXAMPLE permit 50

Figure 6.3: Route map example in Cisco/Quagga syntax.

AS path sets can be defined using a form of regular expressions, matching a path
represented as a space-separated string of numbers. Quagga’s implementation uses
POSIX regular expression syntax [IEE01], with the special character “ ” that matches
the boundaries between numbers. For example, “^1235 ” matches a path that begins
with AS 1235.

Figure 6.3 demonstrates a definition of a route map named EXAMPLE. The (highly con-
trived) goal of this example is to accept only routes for destination prefixes in the
10.x.y.z and 192.168.x.y ranges, and set their local preference attribute to 100. Also,
routes that either have a community list containing the community value 1234:50 or
have come from a router in AS 1235 should have their MED attribute increased by 50.

In the example we first define a prefix set, community set, and AS path set. The first
route map entry matches routes with the desired destination prefix, updates their local
preference, then jumps to the third entry. Non-matching routes will fall through to the
second entry, which has no match statements and therefore matches all routes, and is
defined with deny so that matching routes will be filtered out.
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The third and fourth entries are implementing the community/AS disjunction. Routes
matching the community set will have their MED metric updated, and will then stop
processing. Routes that fail to match will fall through to the fourth entry, updating
their MED if their AS path matches the set defined by a regular expression. Routes
that still fail to match will fall through to the final entry and be accepted by default.

6.1.2 JunOS

Juniper’s JunOS uses different syntax but very similar concepts. A routing policy selects
routes based on a conjunction of match conditions, and applies a set of policy terms
that alter the route’s attributes, with a limited form of flow control to join together
multiple routing policies. Policy match conditions are typically restricted to equality
with a configured constant. Policy terms typically set a value to a constant, or add
or subtract a constant. The metric attribute (BGP’s MED) is a special case, as its new
value can be computed as a linear combination of the old metric and metric2 (in IBGP,
the IGP metric).

Figures C.1 and C.2 (in Appendix C) list the available match conditions and terms de-
scribed in Juniper’s documentation. Some are only applicable in a subset of protocols;
as-path only applies to BGP, while area only applies to OSPF. AS path matches use
regular expressions as before.

Figure 6.4 demonstrates a definition of the same example as the route map in the previ-
ous section. Instead of using goto as in the Cisco example, we use default-action in
the first term to reject all routes but to continue processing. The second term overrides
the action to accept for routes that match the destination prefix set, and updates their
local preference. The third and fourth terms update the metric when appropriate, and
perform an immediate accept which will stop the processing of the route map. (This
is necessary so that a route matching both the third and fourth terms will not have its
metric increased twice.)

6.1.3 Cisco IOS XR

Whereas the traditional Cisco IOS uses the syntax described earlier (copied by Quagga),
the newer Cisco IOS XR system has a redesigned approach based on its Routing Policy
Language (RPL), with the aim of supporting more modular configuration and more
complex logic.

RPL is a simple language with basic control flow statements (if, else, elseif, and, or,
not). It defines expressions to check particular route attributes, such as the form

local-preference {eq | is | ge | le} number



CHAPTER 6. ROUTE MAPS 125

policy-options {

prefix-list PLIST { 10.0.0.0/8; 192.168.0.0/16; }

community CLIST members 1234:50;

as-path ASLIST name "^1235_";

policy-statement example {

term set-default {

then default-action reject;

}

term accept-plist {

from prefix-list PLIST;

then {

local-preference 100;

default-action accept;

}

}

term update-metric-clist {

from community CLIST;

then {

metric add 50;

accept;

}

}

term update-metric-aslist {

from as-path ASLIST;

then {

metric add 50;

accept;

}

}

}

}

Figure 6.4: Route map example in JunOS syntax.

(variables in these command definitions are indicated in italics, choices are indicated
with the syntax { A | B }; in this case the operators correspond to equality, equality
(again), greater-than-or-equal, less-than-or-equal).

It also provides a fairly inflexible set of commands to alter the route attributes, such as

set local-preference number

set med {number | igp-cost | {+ | -} number | max-reachable}
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route-policy example

if destination in (10.0.0.0/8 192.168.0.0/16) then

set local-preference 100

if community matches-any (1234:50) or as-path neighbor-is ’1235’ then

set med + 50

end

else

drop

end

end-policy

Figure 6.5: Route map example in Cisco IOS XR syntax.

These commands are executed sequentially, and can override or alter values set by
earlier commands.

Functionally this is very similar to the traditional Cisco route maps, though with more
powerful syntax and without the need to express complex logic in disjunctive normal
form.

Figure 6.5 implements the previous route map example in the IOS XR syntax. The
control flow is much clearer in this version, due to the ability to nest expressions and to
use “or” to combine conditions. The sets of prefixes and communities are written inline
here, but could be defined outside of the route-policy if they are long or are shared
by multiple policies. AS path regular expressions are still supported, but the as-path

neighbor-is expression is a more readable way to achieve the same behaviour.

6.1.4 BIRD

BIRD [bir] has a more powerful and more generic approach. It lists as a design goal:

Offer powerful route filtering. There already were several attempts to incor-
porate route filters to a dynamic router, but most of them have used simple
sequences of filtering rules which were very inflexible and hard to use for
non-trivial filters. We’ve decided to employ a simple loop-free program-
ming language having access to all the route attributes and being able to
modify the most of them.

It uses filters that are written in a C-like language with control flow (if, case switches,
but no loops) and local variables and a type system. The types are listed in Figure 6.6.
There are a number of operations that can be performed on types: arithmetic and com-
parisons on integers; logical operations on booleans; membership on sets; masking on
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Type Example literals
bool true

int 1234

pair (1234, 5678) or (1+2, a)

quad 127.0.0.1

string "BGP"

ip 10.20.30.40 or fec0:3:4::1
prefix 192.168.0.0/16

int|pair|quad|ip|enum set [ 1, 2, 5..7 ] or [ (111, 222), (123, *) ]

prefix set [ 1.0.0.0/8, 2.0.0.0/8{16,24} ]

enum ORIGIN IGP

bgppath no literals
bgpmask [= 100 * =] or [= * 4 (1+2) a =]

clist no literals

Figure 6.6: BIRD filter data types.

ip; the functions P.first, P.last, P.len and prepend(P, A) on bgpath; the functions
add(C, P) and delete(C, P) on clist; and matching paths against masks.

When a filter is executed for a particular route, a number of route attributes are exposed
as variables to the filter code for reading and (in most cases) writing, as in Figure 6.7.
BIRD parses the configuration into an AST and executes filters using an interpreter.

The combination of primitive types that are tailored to the routing environment plus a
small set of operations that can apply to any route attributes of the right type (instead
of ad hoc decisions to allow arithmetic on MED but not on local preference, for exam-
ple) make BIRD’s filter language much more expressive than the approaches discussed
earlier, while also being easier to define and to learn.

Figure 6.8 repeats the route map example in the BIRD syntax.

6.1.5 XORP

Bittau and Handley [BH06] describe the design of XORP’s policy system. A policy
statement consists of a list of policy terms. Each term specifies a conjunction of match
conditions, and each match condition is a boolean operator comparing a route attribute
to a constant value (for example “localpref < 100”). If a route matches all the condi-
tions in a term, the term’s actions are applied. Actions can modify a route’s attributes
with an operator and a value (such as “localpref = 100” or “med add 50”), and can
also accept or reject routes and jump to other terms. Policies can also call other policies
as subroutines.

The XORP policy manager checks the configuration for validity, and then compiles
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Type Name Notes
Common route attributes:
prefix net read-only
enum scope

int preference

ip from read-only
ip gw

string proto read-only
enum source

enum cast read-only
enum dest read-only
RIP route attributes:
int rip metric

int rip tag

BGP route attributes:
bgppath bgp path

int bgp local pref

int bgp med optional
enum bgp origin ORIGIN IGP|ORIGIN EGP|ORIGIN INCOMPLETE

ip bgp next hop

void bgp atomic aggr optional
clist bgp community optional

Figure 6.7: BIRD filter route attributes.

filter example

prefix set PLIST;

{

PLIST = [ 10.0.0.0/8, 192.168.0.0/16 ];

if !(net ~ PLIST)) then

reject "unwanted prefix";

bgp_local_pref = 100;

if ((1234,50) ~ bgp_community || bgp_path.first = 1235) then

bgp_med = bgp_med + 50;

accept;

}

Figure 6.8: Route map example in BIRD syntax.
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it into a simple stack machine assembly language which is executed by the back-end
route processing code.

This statement/term/condition/action design is similar in structure to the Cisco IOS
and JunOS approaches, and the syntax is superficially very similar to JunOS, but the
implementation has a level of generality closer to BIRD due to defining conditions and
actions over datatypes instead of over specific route attributes. Figure C.3 is part of
XORP’s definition of configuration syntax for BGP policy: the from values are import
conditions, the to values are export conditions, and the then values are actions that
can be used for both import and export.

The definition in Figure C.3 is not a complete specification as some attributes have
more specific types in XORP’s policy backend. For example, community is txt (an arbi-
trary string) in the configuration syntax, but in the backend is represented with the C++
type ElemSetAny<ElemCom32> (a set type specialised for elements of type ElemCom32

which is effectively a 32-bit integer with special parsing/printing functions to match
the conventional BGP community string format). Unfortunately it is non-trivial to
match the configuration syntax to the backend types, as they are separated by an RPC
mechanism that ignores types and represents all values as strings, and the backend
relies on run-time polymorphism to determine the type of each attribute, so there is no
declarative specification of the attribute types.

Figure 6.9 implements the earlier route map example in XORP’s configuration syntax.
The first term in the example statement includes the example-accept-plist statement
as a subroutine, to reject routes that do not match the prefix list. The second term uses
“community >= "1234:50"” to perform a superset test (the string is split on spaces to
give (in this case) a single community value 1234:50).

6.2 Configuration template languages

Configuring routers in a large-scale network is often a major manageability challenge.
A number of tools have been developed that attempt to address the problem by adding
a layer on top of the router’s native configuration language (typically the traditional
Cisco IOS language). This problem is outside our scope but it is relevant in its interac-
tion with the configuration languages.

6.2.1 RPSL

RPSL [AVG+99], first published in 1998, was designed as a common vendor-independent
language for expressing BGP routing policies, allowing them to be stored in a global
database and used for analysis or for automating parts of network configuration. The
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network4-list plist {

network 10.0.0.0/8

network 192.168.0.0/16

}

policy-statement example-accept-plist {

term a {

from {

network4-list: "plist"

}

then { accept }

}

term b {

then { reject }

}

}

policy-statement example {

term a {

from {

policy: "example-accept-plist"

}

then {

localpref = 100

}

}

term b {

from {

community >= "1234:50"

}

then {

med add 50

accept

}

}

term c {

from {

as-path: "^1235( |$)"

}

then {

med add 50

accept

}

}

}

Figure 6.9: Route map example in XORP syntax.
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integer[lower, upper]

real[lower, upper]

enum[name, name, ...]

string

boolean

rpsl_word

free_text

email

as_number

ipv4_address

address_prefix

address_prefix_range

dns_name

filter

as_set_name

route_set_name

rtr_set_name

filter_set_name

peering_set_name

Figure 6.10: RPSL predefined types.

RtConfig tool [MSO+99] can compile RPSL into Cisco IOS or JunOS configuration syn-
tax.

The RPSL language defines a filter-set which identifies routes by a boolean combina-
tion of conditions. Conditions consist of destination prefix matches, AS path regular
expressions, and RSPL dictionary expressions. Policy specifications can be defined on
import and export, matching routes from a given peer matching a given filter, apply-
ing a sequence of RPSL dictionary expressions. The RPSL dictionary is an extensible
model of BGP route attributes and other protocol or router attributes. Attributes in the
dictionary are not typed; instead they each define an attribute-specific list of available
operators. The operator arguments (not counting the attribute itself) have one of the
predefined types in Figure 6.10, or a list or union or dictionary over those types. For
example, the only operator defined for the pref attribute is

operator=(integer[0, 65535])

which assigns a constant integer. The med attribute, which is conceptually also an inte-
ger, instead has the operator

operator=(union integer[0, 65535], enum[igp_cost])

which allows the RPSL expressions med = 10 and med = igp cost (i.e. assigning the
value of a different attribute). The only filter expression defined in RFC 2622 is contains
on the community attribute.

In practice, most of the features of RPSL appear to be little used in its primary us-
age in Internet Routing Registries (IRRs). For example, a snapshot of the RIPE IRR
database1 has 17741 aut-num objects (each corresponding to a BGP AS); of these, 82
use the community attribute in their specified import/export actions, and 25 use it
in import/export filters. Meanwhile, 395 mention “community” or “communities”

1ftp://ftp.ripe.net/ripe/dbase/

ftp://ftp.ripe.net/ripe/dbase/
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in plain text comments in a remarks section. The databases published by other IRRs
show similar behaviour. Separately, analysing a BGP routing table dump2 shows 32007
distinct AS numbers in AS paths, and community values associated with 1710 ASes.
While these are very rough measures, they indicate a very small proportion of ASes
publish their configuration to IRRs with enough detail to model how they handle BGP
community attributes, and a majority of those use manually-maintained non-machine-
readable text instead of RPSL.

6.2.2 Other research

While RPSL is still in relatively widespread usage in IRRs, there have been many at-
tempts to develop new approaches to high-level network configuration.

Böhm et al. [BFM+05] present a system that allows a BGP network layout and network-
wide routing policy to be specified as a series of XML files. Vendor-specific configu-
ration file fragments (typically route map commands) are specified in a simple tem-
plating language, and the system then combines fragments based on the network and
policy specifications to produce the individual router configuration files.

PRESTO [EMG+07] implements a more extensive system, to include aspects of router
configuration beyond BGP (in particular for configuring VPNs). It provides a complex
templating language that manipulates fragments of configuration text, driven by SQL-
like queries on a relational database that describes the network design.

Nettle [VH09] implements a domain-specific embedded language in Haskell for declar-
atively expressing routing configuration. This is then compiled into the low-level
router configuration syntax. The use of Haskell as a host language allows new ab-
stractions to be defined by users, with safety guaranteed by Haskell’s type checker as
long as the standard Nettle configuration-compiler is correct. This contrasts with the
templating approaches where users are expected to write configuration syntax frag-
ments that can easily introduce syntax errors.

These approaches to high-level policy specification are all layered on top of the low-
level router configuration syntax, which creates challenges with extensibility, expres-
sivity, complexity, and correctness. Our aim is to redesign the low-level configuration
as part of the metarouting system so that it is easily extensible to new protocols and
new types of policy, and so that it has well-defined semantics and verifiable correctness
requirements. This would complement the high-level policy systems by providing a
stronger and safer foundation on which they can build, circumventing the accidental
complexity in the current ad-hoc route map configuration syntaxes.

2http://archive2.routeviews.org/bgpdata/2009.07/RIBS/rib.20090701.0000.bz2

http://archive2.routeviews.org/bgpdata/2009.07/RIBS/rib.20090701.0000.bz2
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6.3 Route maps in algebraic routing

Having investigated the scope of route maps as currently implemented in routing pro-
tocols, we will now consider how to reproduce a close approximation of its behaviour
algebraically.

Our original algebraic model of routing defines route computation as

m′ = l B m.

We want to extend this to mirror the capabilities of route maps by encoding some
form of function in the network configuration, but still maintain guarantees about the
algebraic properties of the computation, in particular that it is still increasing (m ≺ m′)
and therefore safe to use in DBF algorithms. We could perform the route computation
as

m′ = f (d, m)

where d is the destination prefix (from set of all prefixes D) and f is an arbitrary route
map function determined by the network configuration (specified in some kind of
domain-specific programming language), as with the route map implementations we
have examined. However, we would have no way to automatically verify the alge-
braic properties, given the general infeasibility of proving mathematical statements
about programs unless the language is extremely restricted. Instead of restricting the
language of f , we choose a slightly more constrained formulation of route computa-
tion,

m′ = f (d, m) B m

based on an underlying routing algebra (S, L, �, B). Now we don’t need to worry
about what value f returns – we merely need it to return a value of the label type L,
and our existing understanding of B allows us to determine the algebraic properties.
The language in which f is implemented must have a type system capable of ensuring
the return value is type L, and it should avoid any non-terminating computation, but
otherwise the language design is free to focus on expressivity and usability with no
risk of compromising safety.

This new route computation is quite different to the original form that has been used
in proofs of algorithm behaviour, as the first operand of B is no longer a constant label
and now depends on m. For simplicity we would like to reuse those existing proofs
instead of rewriting them with the new form of computation, and we can do this by
showing that any routing language in this new form is equivalent to a routing algebra
in the original model.

First, note that every destination prefix is handled entirely independently by the rout-
ing algorithms – we usually don’t refer to the destination at all when discussing the
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algorithms. This means we can assume a fixed value of d, and then repeat the proof for
every possible d. Given an arbitrary route map function f , let fd be a curried function
such that fd(m) = f (d, m). Let # fd be a symbolic representation of that function. (This
is always possible if f is implementable on a Turing machine, which is not a significant
practical restriction). Now define B̃ such that

# fd B̃ m ≡ f (d, m) B m

for all f , m. There is a one-to-many relationship between f and # fd (i.e. no distinct f1,
f2 can have the same symbolic representation) so this is well-defined.

We now have a routing algebra (S, L̃, �, B̃) where L̃ is the set of symbolic represen-
tations of all computable functions of type S → L. Conceptually, this B̃ acts like an
interpreter for the program described by # fd – it is a perfectly normal routing algebra
but one that is far too complex to define with the standard metarouting constructors
(especially in terms of property inference), necessitating this new approach based on
route maps. We already know that B is an increasing function, so

m ≺ f (d, m) B m

and the definition of B̃ results in

m ≺ # fd B̃ m

and this new routing algebra is also increasing. We can therefore use this algebra
safely in vector routing algorithms using the traditional form of route computation
m′ = l̃ B̃ m; and since this is equivalent to m′ = f (d, m) B m by construction, we
can equivalently implement the algorithms with the route map computation f (d, m)
instead of implementing the impractically complex B̃.

However, not all algebraic properties are preserved: if the routing algebra based on
B was distributive, we do not have a guarantee that B̃ will be distributive. The next
section discusses this in more detail.

Note that this proof works because f is applied only to a value d that we can assume
is a global constant, and to the metric m. If we had other inputs to f , such as the time
of day or earlier routing state or a random number generator, we would no longer be
able to show that it acts the same as a basic routing algebra (and, indeed, it would be
easy to define an f such that the network will never converge).

Referring back to the previous analysis of current route map implementations, match-
ing on next hop is the only common condition that is not supported by this algebraic
model of route maps; we treat this as forwarding information that is handled entirely
by the routing algorithm, not by the routing language. However, similar functionality
could be achieved by modifying the routing language to be a lexicographic product
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with a new identifier attribute using the left constructor (so that it is replaced on
each link) with no effect on the ordering of routes, so that the language encodes the
next-hop data directly. Some other match conditions in current implementations, in
particular matching the network interface a route was received on or is being sent to,
have no effect on expressivity (it is always possible to split them into a separate route
map per interface). In general, this model of f as a deterministic function over d and m
is sufficient for emulating the behaviour of current implementations.

6.3.1 Preserving distributivity

Whereas implementing route maps with an unrestricted f can preserve the increasing
property of a routing algebra, it cannot preserve distributivity in general. But would it
be feasible to have a more restricted form of functions that would preserve distributiv-
ity? Given an algebra (S, L, �, B) with

m1 � m2 ⇒ l B m1 � l B m2

for all m1, m2 ∈ S, l ∈ L, we want to define a subset F′ ⊆ (S→ L) such that

m1 � m2 ⇒ fd(m1) B m1 � fd(m2) B m2

for all fd ∈ F′.

One immediate restriction is that these distributive route maps cannot be used for ar-
bitrary route filtering. For example, consider the algebra (N∞, N∞, ≤, +) and the
function

fd(m) =

{
∞ if m = 15
1 otherwise

which filters out routes with some particular metric by forcing them to ∞. This violates
distributivity because 15 < 16 but fd(15) B 15 = ∞ > fd(16) B 16 = 17.

However, the function

fd(m) =

{
∞ if 15 ≤ m
1 otherwise

does preserve distributivity. (This emulates the behaviour of a bounded-integer alge-
bra.)

This suggests a general mechanism for constructing a distributivity-preserving subset
F′ that can use predicates over destinations and metrics. Assume L ⊆ S for simplicity.
Start with the constant functions cl(m) = l. Now pick predicates such that P(d, m1) ∧
m1 � m2 ⇒ P(d, m2), and define the functions

gl,P, f (m) =

{
l B f (m) if P(d, m)
f (m) otherwise
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where f ∈ F′, with F′ defined recursively to contain all c and g functions. With this
approach, route maps can select routes based on any P and add any cost l to them, and
the recursive definition lets this be repeated any number of times.

This seems to allow the programmable flexibility that route maps are designed for, but
the significant problem is the restriction on P. It can perform arbitrary matching on d,
but for a given d it is very limited. If � is a total order, any possible Pd is equivalent to
Pd(m) = n � m for some n ∈ S; if � is a partial order, any Pd is a disjunction of these.
The most common design of a routing algebra is as a lexicographic product, but in such
an algebra with S = A× B, no P could depend solely on B – if it matches (a1, b1) then
it will have to match (a2, b2) when a1 � a2, which means we lose the power to select
routes based on any field but the first.

Because of these restrictions, we consider distributivity to be too onerous a requirement
for any practical definition of route maps, so we will not consider it further in our
design.

6.4 Route maps in metarouting

We have shown that we can safely configure a network using functions f : D× S→ L
on arcs, instead of static labels l : L. Now we face the question of how to practically
define f , when the rest of the algebra is defined with the metarouting system.

The earlier analysis of routing protocol implementations, especially XORP and BIRD,
gives confidence that the approach of assigning types to route attributes and then
defining general operators over types, as opposed to defining specific operators for
each attribute individually (as with the older designs of Cisco, JunOS and RPSL), is
feasible to implement efficiently and usable by network operators for protocols with
the complexity of BGP. As the developers of XORP state, “it appears that a small set of
operators and types can handle all the policies supported by commercial router ven-
dors, for all the main routing protocols” [BH06].

The type systems in these implementations are broadly similar to metarouting’s ERL
types. The main difference is that they treat routes as having a flat list of named at-
tributes, whereas ERL may have more complex nested record types. In Section 5.2.3
we described a method of constructing flat string identifiers for values in nested types
(in that case for configuration annotations), so the difference is merely syntactic. It
therefore seems natural to use ERL types directly for the arguments and return type
of f when implementing route maps in metarouting; there is no need to introduce an
extra layer of abstraction to translate the ERL types into a different set of types before
operating on them.

To implement these functions over ERL types, we could use any kind of side-effect-free
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programming language, for example a functional language like Haskell, or a C-like
language (as with BIRD), or a simplistic new language specialised for writing route
maps (as with Cisco IOS XR). The main difficulty is that the ERL type L may not fit
cleanly within the type systems of these languages. For example L could be a bounded
integer type with the range [1, 100], while most languages only provide arithmetic on
unbounded or n-bit integers. The type S is less problematic: the type system is likely to
support some superset of any given ERL type, for example a 32-bit integer type instead
of [1, 100], so functions may safely use that as the argument type; but the return value
must be in L and not just a superset. We could have the user’s code return values in a
superset (e.g. any 32-bit integer) and wrap the code in a verification layer that reports
an error and returns a default value (typically infinity) if the value is not in L (in this
case by testing 1 ≤ l ≤ 100), but that would be an inelegant approach and the reliance
on run-time type checking would make route maps more error-prone than if they had
compile-time checking.

A more robust solution would be to replace the language’s integer types and oper-
ations with some custom types (corresponding precisely to ERL types) and custom
operations that make out-of-range values impossible. For example, instead of provid-
ing a function that sums values corresponding to the ERL type TyIntRange(1, 100)

and would have to fail on overflow, provide only a function that sums values of type
TyAddConst(W, TyIntRange(1, 100)) so it can always return a valid value of that type
(using W as a sensible result on overflow). This would involve implementing the full
range of ERL’s types in the chosen language. In principle we could do this for any
language, and in fact we already have two languages that implement these types: C++
(via libmrc), and ERL itself. These are far from ideal languages for this purpose – C++
provides no safety guarantees and is difficult to compile, while ERL was designed as
an intermediate language not to be used directly by humans, so preferably we would
replace it with a more usable language syntax – but they are sufficient for demon-
strating the fundamental concepts, and designing yet another language would be an
unnecessary distraction for this work. We will therefore use ERL as the language for
exploring this approach to implementing route maps.

Previously we have only put ERL constant values in configuration files, and all other
ERL expressions have been compiled to C++ and then to machine code in an offline
process. Now we want to write route maps as ERL transform expressions, and there
are a number of ways we could implement this. Firstly, we could embed an ERL parser
and interpreter inside the routing algorithm implementation. (The interpreter could
run on the parsed AST as in BIRD, or on a stack machine bytecode format as in XORP.)
Alternatively, we could use the existing C++ compiler infrastructure – either running
on the router, or delegated to a remote server if the router has insufficient resources
to run the compiler directly – to compile the route maps into efficient machine code
whenever the configuration changes. These are standard programming language tech-
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niques, and different implementations may choose different tradeoffs. Similar options
would be available if route maps were written in languages other than ERL: the impor-
tant factor is that we have a well-defined functional language that permits this flexibil-
ity without affecting the semantics of the protocol.

ERL already has most of the types that we need for route maps, and the operations
for constructing values of those types, but our earlier analysis of BGP route map syn-
taxes indicates that we need to extend it with more predicates to handle the route-
matching features that route maps typically provide. The only types we will add are
TyPrefix and TyPrefixSet, for handling IP address prefixes, and a binary operator
BoPrefixIn(p :TyPrefix, s :TyPrefixSet):TyBool. In gQuagga we could implement
TyPrefixSet as a reference to a named prefix-list that is defined using Quagga’s stan-
dard prefix-list mechanisms, so there is no need to define new syntax for parsing pre-
fixes. The other expressions we add for completeness are an equality operator, and
comparison operators over a preorder:

ERL syntax Semantics
BoEq(a:T, b:T) : TyBool JaK = JbK
BoLte(p:T, a:T, b:T) : TyBool JaKJpKJbK
BoLt(p:T, a:T, b:T) : TyBool JaKJpKJbK∧ ¬(JbKJpKJaK)

Many route map behaviours can be expressed using more general features of ERL,
so we do not add special cases for them all. For example, community lists can be
implemented as type TySet(TyInt) with matching based on set intersection: the ERL
expression

UoBoolNot(UoSetEmpty(SgSetInter(c, ExprSet(100, 200))))

corresponding to the algebraic expression

¬(|c ∩ {100, 200}| = 0)

will match a set c that contains either 100 or 200. The C++ implementation of this
expression will be reasonably efficient, as sets are stored as red-black trees and so in-
tersection has cost O(n + m) in the sizes of the sets. The constant factors could be
reduced by adding special-casing in the ERL-to-C++ compiler to return after the first
match when an expression of the form UoSetEmpty(SgSetInter(...)) is seen. Ex-
act community matches can simply use BoEq, while new values can be added with
SgSetUnion and removed with SgSetDiff.

The power of this approach is that it will work for more complex ERL types, such as
sets of records that contain a pair of integers (as with BGP communities), or sets over
a disjoint union of various differently-typed complex values (as with BGP extended
communities): the small collection of primitives supplied by ERL is sufficient for a
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wide range of behaviour over a wide range of routing languages, and it is not neces-
sary to hard-code the implementation of every new match condition. A higher-level
syntax, with shortcuts for writing these kinds of community expressions at a higher
level of abstraction, would make this system more usable without losing the power of
the underlying programmable model.

6.5 Examples

To reproduce the route map example of Section 6.1 in the metarouting system, we will
first define a (partial) routing language with the relevant attributes for an extremely
simplified version of BGP:

let type comm =

TyRecord(

as = TyIntRange(0, 65535),

local = TyIntRange(0, 65535)

)

let type sig =

TyAddConst(INF,

TyRecord(

aspath = TyListSimp(TyIntRange(0, 65535)),

communities = TySet(comm),

localpref = TyIntNonNeg,

med = TyIntNonNeg

)

)

let type lbl =

TyAddConst(INF,

TyRecord(

asnum = TyIntRange(0, 65535),

communities = TySet(comm),

localpref = TyIntNonNeg,

med = TyIntNonNeg

)

)

We can then implement the route map as an ERL transform expression, shown in Fig-
ure 6.11. This route map expression can be compiled with mrc into C++ code, then
loaded into a gQuagga routing protocol with an extension to the mrc API (including
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let transform rmap = fun (d:TyPrefix s:sig) ->

ExprCond(

(* Check the prefix is in the TyPrefixSet named ’plist’ *)

BoPrefixIn(d, "plist"),

(* If so, return a new label record *)

TyRecord(

asnum = 1234,

communities = ExprSelect(s, communities),

localpref = 100,

(* Update med depending on complex condition *)

med = ExprCond(

BoOr(

(* Either the community 1234:50 is in the communities list ... *)

UoBoolNot(UoSetEmpty(SgSetInter(

ExprSelect(s, communities),

ExprSet(ExprRecord(as=1234, local=50) : comm)

))),

(* ... or the aspath starts with 1235 *)

BoEq(

UoListHead(ExprSelect(s, aspath)),

1235

)

),

(* Add 50 to previous med value *)

ExprBinop(BoSemigroup(SgIntPlus), ExprSelect(s, med), 50),

(* Otherwise pass through med unchanged *)

ExprSelect(s, med)

)

)

(* Prefix d not in plist, so return infinity to reject the route *)

INF

)

Figure 6.11: Route map implemented as ERL transform expression.
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a callback function so the compiled BoPrefixIn operator can perform a lookup using
gQuagga’s standard prefix lists).

6.6 Conclusions

Earlier work with XORP and BIRD has shown that it is possible to implement route
maps for protocols such as BGP using a small set of common types and operations,
providing greater power than the inflexible specialised behaviours implemented by
many other router implementations. We have shown that this can be extended to any
protocol defined by a routing algebra, by expressing the route maps in a language
similar to ERL, and further that we can add correctness guarantees to route maps based
on algebraic properties.



Chapter 7

Case study

Figure 7.1 reprises the implementation part of the system diagram from Chapter 1; this
dissertation has now explored most of the components. In Chapter 3 we defined the
RAML and ERL languages, and the translation from RAML to ERL. The compilation
from ERL to C++ is described in other work [Bil09]. Chapter 4 covered the implementa-
tion of gQuagga routing algorithms and the linkage with a compiled routing language.
Chapter 5 (interface configuration) and Chapter 6 (route maps) extended the routing
languages and algorithms with important features for vector protocols.

In this chapter we collect all the components together into a working protocol imple-
mentation, to demonstrate how they interact and how the completed system can be
used.

7.1 Scoped product protocol

In Section 3.3.3 we introduced the scoped product algebra, which implements a net-
work model split into regions with links separated into intra-region (internal) and
inter-region (external). This is not intended to be a practical design for a routing pro-
tocol – it is too limited to support much expressive policy, and the region model may
be unnecessarily complex for small networks and insufficiently scalable for large net-
works – but it demonstrates the major principles and features of the metarouting sys-
tem and the general shape of potential future routing language designs.

In Section 5.2 we extended the RAML specification of the algebra to support separate
export and import interface labels. The definition of RAML lets us convert the algebra
into an ERL implementation, which can then be compiled into C++. (We do not have
a sufficiently complete RAML-to-ERL compiler at the time of writing, so for this case
study we wrote the equivalent ERL code by hand.) Now we can link that C++ code to
the algorithm implementation and produce a usable routing protocol.

142
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RAML

ERL

Language
implementation

Algorithm
implementation

Protocol
implementation

Compiler
frontend

Compiler
backend

Linker

Figure 7.1: Components of the implementation of the metarouting toolkit.

Region 1111 Region 2222

10.10.0.1

10.20.0.1 10.30.0.1
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idist=11

idist=22
ipath=10
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epath=1111

idist=0
ipath=[]

idist=33

idist=44
ipath=30

Figure 7.2: Network with interface labels from the scoped product routing language.
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In mode "route-policy NAME out":

set external ecomm <0-2>

set external epath <0-2147483647>

set external idist unit

set external ipath unit

set internal ecomm unit

set internal epath unit

set internal idist <0-2147483647>

set internal ipath unit

set w

In mode "route-policy NAME in":

set external ecomm unit

set external epath unit

set external idist <0-2147483647>

set external ipath INDEX <0-2147483647>

set external ipath empty

set external ipath notsimple

set internal ecomm unit

set internal epath unit

set internal idist <0-2147483647>

set internal ipath <0-2147483647>

set w

Figure 7.3: gQuagga configuration command templates for specifying export and im-
port policy labels.

bgpd(config)# route-policy example in

bgpd(config-route-policy-in)# set ?

w Set value to constant

external Set external value

internal Set internal value

bgpd(config-route-policy-in)# set external ?

ecomm Set ecomm value

epath Set epath value

idist Set idist value

ipath Set ipath value

bgpd(config-route-policy-in)# set external ipath ?

notsimple Set value to constant

empty Set to empty list

INDEX Set nth (starting from 0) component of list

bgpd(config-route-policy-in)# set external ipath 0 ?

<0-2147483647> Set bounded integer value

bgpd(config-route-policy-in)# set external ipath 0 1234

bgpd(config-route-policy-in)#

Figure 7.4: Output of interactive gBGP configuration shell.

Figure 7.2 illustrates the network configuration we will use for this example, with the
relevant fields of policy labels listed next to each interface. For simplicity we only
include links in a single direction, allowing routing information to flow from router
10.10.0.1 through to router 10.40.0.1; links in the other direction will be labelled
with W.

As discussed in Section 4.5.2, we automatically generate gQuagga configuration com-
mand templates from the ERL code. Figure 7.3 lists the commands from this example.
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BGP: 10.10.0.1 rcvd UPDATE w/ attr: nexthop 10.10.0.1,

mr-metric inject(internal, <ecomm = 0, epath = [], idist = 11, ipath = []>)

BGP: 10.10.0.1 rcvd 10.10.0.1/32

BGP: 10.30.0.1 [FSM] Timer (routeadv timer expire)

BGP: 10.30.0.1 send UPDATE 10.20.0.1/32

BGP: 10.30.0.1 send UPDATE 10.10.0.1/32

BGP: 10.30.0.1 rcvd UPDATE w/ attr: nexthop 10.30.0.1, mr-metric W

BGP: 10.30.0.1 rcvd UPDATE about 10.30.0.1/32 -- DENIED due to: metric is infinity;

Figure 7.5: Fragment of output from gBGP process running on router 10.20.0.1.

Figure 7.4 shows the output of gQuagga’s interactive configuration shell when linked
with this routing language: entering a partial command followed by a “?” prints a
list of the tokens that are allowed to come next in the command. Each command sets
either the whole label to a given value (e.g. “set w”), or a component of the nested
record/union structures, or an element of a list/set component (e.g. “set external

ipath INDEX ...” to set the INDEXth element). Once a set of commands has been
given, followed by an “end-policy” command, the policy is checked for correctness:
for example if any “set external ...” command is used then the label cannot also
be set to w or an internal value, and if it is an external export policy then both ecomm

and epath must be specified, else an error is reported and the policy is rejected. (Fields
of a record which are of unit type, and can only take the value unit, are allowed to be
omitted for convenience.)

Figure 7.6 lists the configuration files necessary for running this network with gBGP.
The “bgp router-id” lines define the ID of the router with that configuration file. The
“network” lines list IPv4 address prefixes which will be originated as new routes by the
router. (In this example we make each router advertise its own ID as an IP address.)
The “default-metric” blocks specify the metric value that will be assigned to each of
these originated routes.

The “neighbor” lines indicate that the router should set up a BGP session to the named
router, using the named route-policy label on the export (“out”) or import (“in”) in-
terface of the new link. These command refer to the“route-policy” blocks that define
export labels or import labels using the commands described earlier.

We can now run this network with gBGP and observe its behaviour. Figure 7.5 shows
a part of the debug log output of router 10.20.0.1: first it receives a route from 10.10.0.1,
whose wire metric is tagged as internal and with an idist of 11, corresponding to
the export policy of 10.10.0.1. Next it sends this route, plus its own originated route
10.20.0.1/32, to router 10.30.0.1. Finally it receives a route back from 10.30.0.1, with
wire metric W (due to the policies we configured for the ‘reverse’ direction around the
network), which is denied (i.e. not inserted into the routing table and not used for
routing any traffic) because it is an infinity value.
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router bgp

bgp router-id 10.10.0.1

network 10.10.0.1/32

neighbor 10.20.0.1 route-policy 10-to-20 out

neighbor 10.20.0.1 route-policy 20-to-10 in

default-metric

set ecomm 0

set epath empty

set idist 0

set ipath empty

end-metric

route-policy 10-to-20 out

set internal idist 11

end-policy

route-policy 20-to-10 in

set w

end-policy

router bgp

bgp router-id 10.40.0.1

network 10.40.0.1/32

neighbor 10.30.0.1 route-policy 40-to-30 out

neighbor 10.30.0.1 route-policy 30-to-40 in

default-metric

set ecomm 0

set epath empty

set idist 0

set ipath empty

end-metric

route-policy 30-to-40 in

set internal idist 44

set internal ipath 30

end-policy

route-policy 40-to-30 out

set w

end-policy

router bgp

bgp router-id 10.20.0.1

network 10.20.0.1/32

neighbor 10.10.0.1 route-policy 20-to-10 out

neighbor 10.10.0.1 route-policy 10-to-20 in

neighbor 10.30.0.1 route-policy 20-to-30 out

neighbor 10.30.0.1 route-policy 30-to-20 in

default-metric

set ecomm 1

set epath empty

set idist 0

set ipath empty

end-metric

route-policy 10-to-20 in

set internal idist 22

set internal ipath 10

end-policy

route-policy 20-to-30 out

set external ecomm 1

set external epath 1111

end-policy

route-policy 20-to-10 out

set w

end-policy

route-policy 30-to-20 in

set w

end-policy

router bgp

bgp router-id 10.30.0.1

network 10.30.0.1/32

neighbor 10.20.0.1 route-policy 30-to-20 out

neighbor 10.20.0.1 route-policy 20-to-30 in

neighbor 10.40.0.1 route-policy 30-to-40 out

neighbor 10.40.0.1 route-policy 40-to-30 in

default-metric

set ecomm 0

set epath empty

set idist 0

set ipath empty

end-metric

route-policy 20-to-30 in

set external idist 0

set external ipath empty

end-policy

route-policy 30-to-40 out

set internal idist 33

end-policy

route-policy 30-to-20 out

set w

end-policy

route-policy 40-to-30 in

set w

end-policy

Figure 7.6: gBGP configuration files for the network in Figure 7.2.
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Router Dest. prefix Metric
10.10.0.1 10.10.0.1/32 <ecomm=0, epath=[], idist=0, ipath=[]>

10.20.0.1/32 W

10.30.0.1/32 W

10.40.0.1/32 W

10.20.0.1 10.10.0.1/32 <ecomm=0, epath=[], idist=33, ipath=[10]>

10.20.0.1/32 <ecomm=1, epath=[], idist=0, ipath=[]>

10.30.0.1/32 W

10.30.0.1/32 W

10.40.0.1/32 W

10.30.0.1 10.10.0.1/32 <ecomm=0, epath=[1111], idist=0, ipath=[]>

10.20.0.1/32 <ecomm=1, epath=[1111], idist=0, ipath=[]>

10.30.0.1/32 <ecomm=0, epath=[], idist=0, ipath=[]>

10.40.0.1/32 W

10.40.0.1/32 W

10.40.0.1 10.10.0.1/32 <ecomm=0, epath=[1111], idist=77, ipath=[30]>

10.20.0.1/32 <ecomm=1, epath=[1111], idist=77, ipath=[30]>

10.30.0.1/32 <ecomm=0, epath=[], idist=77, ipath=[30]>

10.40.0.1/32 <ecomm=0, epath=[], idist=0, ipath=[]>

Table 7.1: Routing tables produced by offline vector algorithm.

As well as linking the compiled C++ code with a gQuagga routing algorithm, we can
use the same compiled library with a custom script written in Python that implements
a simple offline non-distributed vector routing algorithm to help test and debug and
examine the behaviour of a language. This tool can parse the configuration files from
Figure 7.6, and output the routing tables at each step in the convergence process. Ta-
ble 7.1 lists the final output for this example network, matching the routing tables
produced by gBGP running the same configuration.

We will now extend this example to include route maps. First we update router 10.10.0.1
to originate some extra routes with destinations 10.10.0.2/32 and 10.10.0.3/32. To
implement the route map, we replace router 10.30.0.1’s “route-policy 20-to-30

in” with the “route-map” expression listed in Figure 7.7. This aims to filter out routes
to 10.10.0.3/32, and to compute the import label’s idist field based on the ecomm

field of the wire metric received over the link.

The route map is an ERL expression that is dynamically compiled to C++ and then
executed for each route received, with the output used in place of the import label.
(Currently this is only implemented in the Python script, but the same approach could
be applied in gQuagga.) In this example we write the ERL with full explicit types.
wir and lbl i are the standard types of the routing language based on our defini-
tion of the ERL code extracted from a RAML specification. A few shorthand types
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Router Dest. prefix Metric
10.40.0.1 10.10.0.1/32 <ecomm=0, epath=[1111], idist=1077, ipath=[30]>

10.10.0.2/32 <ecomm=0, epath=[1111], idist=1077, ipath=[30]>

10.10.0.3/32 W

10.20.0.1/32 <ecomm=1, epath=[1111], idist=2077, ipath=[30]>

10.30.0.1/32 <ecomm=0, epath=[], idist=77, ipath=[30]>

10.40.0.1/32 <ecomm=0, epath=[], idist=0, ipath=[]>

Table 7.2: Routing table for 10.40.0.1 in route-map example.

like wir noninf were defined by hand elsewhere for lessened inconvenience; in this
case wir = TyAddConst(W, wir noninf), so the ExprConstCase expressions branch on
whether the metric is a W or of type wir noninf. This is evidently not a very usable
language for writing route maps but it demonstrates the concepts.

Figure 7.2 lists the output at router 10.40.0.1 for this new network with the route map.
The route to 10.10.0.3 is indeed filtered out (set to W), and the route to 10.20.0.1 (orig-
inated with ecomm=1) has a different idist as intended. The addition of route maps has
therefore provided significant additional expressivity to our routing protocol’s policy,
with no changes to the specification of the routing language and without compromis-
ing the protocol’s correctness properties determined by automatic verification of the
algebraic language specification.
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route-map 20-to-30 in

fun (p:TyString m:wir) ->

(* If the wire metric ’m’ is W, return the label W *)

ExprConstCase(m, W:wir, W:lbl_i,

(* ... else process the non-W version of ’m’ *)

fun (m2:wir_noninf) ->

(* If the destination prefix is in the given set, return the label W *)

ExprCond(

ExprUnop(UoPrefixIn("10.10.0.3/32"):TyBool, p):TyBool,

W:lbl_i,

(* Otherwise return a non-W external label *)

ExprRest(

ExprInject(external,

ExprRecord(

(* Metric’s ecomm/epath were computed on export so they are empty here *)

ecomm = ExprUnit : TyUnit,

epath = ExprUnit : TyUnit,

(* Set ipath to a non-W empty list *)

ipath = ExprRest(ExprList() : TyListSimp(TyIntNonNeg)) : paths_t

(* Compute idist based on the wire metric (as an arbitrary example) *)

idist =

(* Check if wire metric was internal or external *)

ExprSwitch(m2,

internal = fun (m3:wir_int) -> 0 : TyIntNonNeg,

external = fun (m3:wir_ext) ->

(* If the wire metric’s ecomm = 1 then return 2000, else 1000 *)

ExprCond(

ExprBinop(BoEq:TyBool,

ExprSelect(m3, ecomm):TyIntRange(0, 3), 1:TyIntRange(0, 3)

) : TyBool,

2000 : TyIntNonNeg,

1000 : TyIntNonNeg

) : TyIntNonNeg

) : TyIntNonNeg,

) : lbl_i_ext

) : lbl_i_noninf

) : lbl_i

) : lbl_i

) : lbl_i

end-map

Figure 7.7: Example route map written in ERL.
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Conclusions

8.1 Future work

The scope of the metarouting system allows a great many directions for improvements
or extensions. This section will suggest some that are related to the work in this disser-
tation.

8.1.1 Extended language definitions

The version of RAML we defined in Section 3.2 is a small subset of what would be
necessary in practice for many more varied routing languages. Billings [Bil09, Ch. 8]
describes a larger version of RAML, and more recently Naudžiūnas [Nau11] details
a version with extensive property inference implemented in Coq. These can largely
be implemented with the version of ERL described in this dissertation, with the ad-
dition of a number of extra semigroup operators that follow the same patterns as the
ones we defined here. A few other additions to ERL have been implemented and may
be useful in some cases: enumeration types and associated operators (for example to
replace the integer types in implementing the customer–provider–peer algebra from
Section 2.2.6), product types (similar to records but without requiring explicit names,
for convenience), and several unary operators. Integrating these into the definition of
ERL is straightforward.

Further extensions to RAML were briefly discussed in Section 4.3 for modelling the
behaviour of EIGRP (combining several metric components using addition to get a
weight that can be compared), and Section 6.4 discussed the requirements for a user-
friendly route map language that would be compatible with the metarouting system;
these language design issues could benefit from further exploration.

150
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8.1.2 Infinities

One detail we have glossed over in the scoped product example of Section 3.3.3 is
the distinction between infinities (elements that are top in � and annihilators in B)
at different levels of the algebra: a loop in the epath attribute can result in the metric
(0, ω, 0, []) which is different from the top-level infinity metric ω. To handle this
properly, it seems we need a mechanism to propagate infinities from sub-expressions
out to the top level. One attempted solution is to define a new absorbing variant of
lexicographic product

(S1, L1, �1, B1) ~×ω (S2, L2, �2, B2)

which produces a new algebra with metric type

S =
(
(S1 − {ω1})× (S2 − {ω2})

)
∪ {ω}

and a new B which returns the metric ω if either B1 or B2 returns their correspond-
ing ω. In practice the definition would need to be extended to cope with sub-algebras
that do not have an infinity, as well as having some way to determine what the infinity
value actually is. Currently the infinity value is identified only by the algebraic proper-
ties of the sub-expressions; this definition may result in the ERL semantics of a RAML
expression having a dependency on the algebraic properties, which is not currently the
case. It will also be necessary to derive inference rules for the algebraic properties of
this new operator, as they differ from the standard lexicographic product.

It may be useful to let routing language specifications select the infinity-propagation
behaviour on a field-by-field basis rather than choosing it for the entire product con-
structor. For example a language might be designed with a clamped distance field lim-
ited to the range [0, 254] ∪ {∞} so it could be implemented efficiently in a single byte,
where ∞ represents a route that is unusually long and no longer able to participate
usefully in shortest-path-length decisions but is still perfectly acceptable for routing;
it would be necessary to specify that this infinity does not propagate out to a global
infinity, while other fields (such as paths) in the same lexicographic product may need
to.

The difficulty with introducing the absorbing lexicographic product into metarouting
is that we will require if-and-only-if property inference rules for it, which are non-
trivial. Parsonage et al. [PNR11] suggest rules but only for absorbing infinities from
the first component, not for the more difficult and more important general case. As
an alternative, Gurney [GG11] introduces a method for handling errors through reduc-
tions: given a routing algebra S, an arbitrary subset E of metrics (for example those con-
taining infinities in certain product fields) can be mapped onto a single infinity value,
as part of a new algebra err(S, E). We could implement equivalent behaviour in our
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current metarouting system using the route maps of Chapter 6, wrapping f (d, m) into
a new fE(d, m) that first tests whether f (d, m) B m ∈ E and returns the infinity la-
bel in that case, else continues with the standard processing, but a more elegant and
automatic solution is desirable.

8.1.3 ERL algebraic properties

Billings [Bil09, Ch. 8] begins to explore some compiler optimisations that are possible
when we know the algebraic properties of the ERL code being compiled. In particular,
given an order transform (S, L, �, B), a minimal set M ∈ ℘�(S), and a label l ∈ L, a
useful operation is to map the transform over the set giving {l B s | s ∈ M}. In general
it will be necessary to re-minimise the output to ensure it is still a minimal set, but if the
order transform has the distributivity property then there is no need to re-minimise.
Knowing the properties therefore allows the ERL compiler to omit unnecessary code
and make better optimisation decisions.

Our updated definition of languages in Chapter 3 associates algebraic properties only
with RAML expressions, not with ERL expressions (which may not even represent
structures such as ordered transforms in which properties are meaningful), and so the
ERL compiler cannot be responsible for this optimisation by itself. One option would
be to reintroduce the concept of properties into ERL. As we should perform these opti-
misations even when the relevant expressions are nested inside a more complex rout-
ing language, we would need a way to refer to subexpressions in the ERL types and
preorders and transforms and associate them with the relevant properties (computed
by the RAML-to-ERL compiler), then have the ERL compiler extract these properties
when it is generating code.

Alternatively we could make this the responsibility of the RAML-to-ERL compiler:
instead of translating a minset union map RAML expression into a UoSetMap ERL op-
erator, it would first check the algebraic properties of the RAML sub-expression and
translate into a new UoSetMapDistributive operator to select the optimised implemen-
tation when it knows it to be safe. This would better preserve the distinction between
RAML and ERL, in that only RAML knows about algebraic properties and ERL merely
represents the computational content of the algebra, but it would also force the RAML
compiler to understand these low-level optimisations.

8.1.4 Multipath routing

In Chapter 4 we said that the algorithms require an algebra with a total order, so that
there is always a single best route. If we relax this requirement then we can get a model
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of multipath routing: there may be multiple routes that are equivalent or incompara-
ble, and the router could use any or all of them for forwarding traffic. Alternatively
we could implement the routing algebras as semigroup transforms (S, ⊕, B): instead
of a partial order � over metrics S, use a (non-selective) semigroup operator ∪ over
minimal sets ℘�(S). This is more powerful than the equal-cost multipath (ECMP) pro-
vided by some implementations of protocols such as OSPF and BGP – a larger range
of paths can be made available for forwarding since we do not require equality – but
in most cases it would require a forwarding mechanism based on tunnels rather than
the basic next-hop forwarding model we have assumed in this dissertation, to ensure
the forwarding paths exactly match the selected routes.

In either case we would need to extend the routing algorithms to support multipath
routing. There has been some recent work in the IETF to add a multipath mechanism
to BGP [WCRS11, VdSFB10], which could be reused for a multipath gBGP based on
partial orders. Multipath based on min-sets semigroups could provide more power,
including a kind of aggregation of multiple min-set entries into a single entry to avoid a
potentially exponential expansion in set sizes, but would require a much more complex
interaction between the routing language implementation and the forwarding plane of
the algorithm implementation.

8.2 Summary

The metarouting project began with the idea of implementing routing protocols us-
ing declarative specifications based on algebraic routing theory, balancing carefully
between expressivity and the tractability of providing correctness guarantees. Over
time, the scope and complexity of this concept have become apparent and have grown
significantly in terms of both the theory and the practical implementation, but the core
idea has been strong enough to evolve and extend to support this. In this dissertation
we detailed some components of the implementation (the language semantics in Chap-
ter 3 and the generalised Quagga algorithms in Chapter 4) and many of the design
decisions they involved, building up a working prototype implementation (demon-
strated in Chapter 7), which provides many development challenges in itself and helps
to solidify the theory by highlighting any unresolved gaps. Focusing on vector routing
protocols, which can efficiently implement complex policies due to their use of the dis-
tributed Bellman-Ford algorithm, we then extended the theory and implementation to
develop features that are important in current protocol designs, namely the handling
of complex policy that is split across export/import interfaces and that can be imple-
mented using route maps (Chapters 5 and 6). This provides both a framework for
understanding the capabilities and limits of protocol designs, and an implementation
for rapidly experimenting with protocols based on potentially radically new routing
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languages.

Although there are still many aspects of routing as practised today or as proposed for
future networks that have not yet been incorporated into the metarouting model and
that may introduce significant challenges of their own, the experience of developing
a practical implementation of the model and extending it to support new features for
vector protocols has shown this to be a viable approach and likely a fruitful direction
for future research.
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Appendix A

Full ERL definition

A.1 Types

Type expression t Algebraic semantics JtK
TyUnit 1

TyBool {>, ⊥}

TyInt Z

TyIntNonNeg N

TyIntPos N+

TyIntRange(n, m) {i ∈ Z | n ≤ i ≤ m}

TyString set of all opaque character strings

TyList(t′) {[s1, . . . , sn] | n ∈N∧ si ∈ Jt′K}
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Type expression t Algebraic semantics JtK
TyListSimp(t′) {[s1, . . . , sn] | n ∈N∧ si ∈ Jt′K∧ si = sj ⇒ i = j}

TySet(t′) ℘(Jt′K)

TySetMin(t′, p) ℘JpK(Jt′K)

TyAddConst(c, t′) {c} ∪ Jt′K

TyRecord(n1=t1, n2=t2) Jt1K× Jt2K

TyUnion(n1=t1, n2=t2) Jt1K] Jt2K

A.2 Preorders

Preorder expression p Algebraic semantics JpK
PoIntLte : t ≤

PoListLenLte : t � where s1 � s2 ⇔ |s1| ≤ |s2|

PoAddTop(p′:t) : TyAddConst(c, t) � where s1 � s2 ⇔ s2 = c ∨ (s1 6= c ∧ s2 6= c ∧ s1 Jp′K s2)

PoAddBot(p′:t) : TyAddConst(c, t) � where s1 � s2 ⇔ s1 = c ∨ (s1 6= c ∧ s2 6= c ∧ s1 Jp′K s2)

PoDual(p′:t) : t � where s1 � s2 ⇔ s2 Jp′K s1

PoEquiv : t � where s1 � s2 for all s1, s2

PoIncomp : t � where s1 � s2 ⇔ s1 = s2

PoRecord(n1=p1:t1, n2=p2:t2)

: TyRecord(n1=t1, n2=t2)

� where (u1, u2) � (v1, v2)⇔ u1Jp1Kv1 ∧ u2Jp2Kv2
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Preorder expression p Algebraic semantics JpK
PoRecordLex(n1=p1:t1, n2=p2:t2)

: TyRecord(n1=t1, n2=t2)

� where (u1, u2) � (v1, v2)⇔ u1 ≺1 v1 ∨ (u1 �1 v1 ∧ u2 �2 v2)
with �1 ≡ Jp1K and �2 ≡ Jp2K

PoUnion(n1=p1:t1, n2=p2:t2)

: TyUnion(n1=t1, n2=t2)

� where
inl(u1) � inl(v1) ⇔ u1 Jp1K v1

inr(u2) � inr(v2)⇔ u2 Jp2K v2

PoUnionOrdered(n1=p1:t1, n2=p2:t2)

: TyUnion(n1=t1, n2=t2)

� where
inl(u1) � inl(v1) ⇔ u1 Jp1K v1

inr(u2) � inr(v2)⇔ u2 Jp2K v2

inl(u1) � inr(v2)

A.3 Semigroups

Semigroup expression g Algebraic semantics JgK
SgIntPlus : t +

SgIntRangePlus

: TyAddConst(c, TyIntRange(n, m))

⊗ where
c⊗ i = c
i⊗ c = c

i1 ⊗ i2 = i1 + i2 if n ≤ i1 + i2 ≤ m
i1 ⊗ i2 = c otherwise

SgIntMin : t min

SgIntMax : t max
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Semigroup expression g Algebraic semantics JgK
SgAddAlpha(g′:t) : TyAddConst(c, t) ⊗ where for all s, s1, s2 ∈ JtK,

c⊗ s = s
s⊗ c = s

s1 ⊗ s2 = s1 Jg′K s2

SgAddOmega(g′:t) : TyAddConst(c, t) ⊗ where for all s, s1, s2 ∈ JtK,
c⊗ s = c
s⊗ c = c

s1 ⊗ s2 = s1 Jg′K s2

SgLeft : t ⊗ where for all s1, s2 ∈ JtK, s1 ⊗ s2 = s1

SgRight : t ⊗ where for all s1, s2 ∈ JtK, s1 ⊗ s2 = s2

A.4 Transforms

Transform expression f Algebraic semantics J f K
fun (a1:t1 a2:t2 . . .) -> f λa1a2. J f K

ident the value of ident in the current variable binding

ExprUnit : TyUnit 1

ExprInt(n) : t n

ExprString("s") : t s

ExprList( f1, f2, . . .) : t [J f1K, J f2K, . . .]

ExprSet( f1, f2, . . .) : t {J f1K, J f2K, . . .}



A
PPEN

D
IX

A
.

FU
LL

ER
L

D
EFIN

IT
IO

N
167

Transform expression f Algebraic semantics J f K
ExprBinop(BoListCons,

f1:t, f2:TyList(t)
) : TyList(t)

J f1K :: J f2K

ExprBinop(BoListCons,

f1:t, f2:TyAddConst(c, TyListSimp(t))
) : TyAddConst(c, TyListSimp(t))

{
c if J f1K is in list J f2K
J f1K :: J f2K otherwise

ExprBinop(BoSemigroup(g), f1, f2) : t J f1K JgK J f2K

ExprApply( f ′:t, a1, . . .) : t J f ′K(a1, . . .)

ExprCond( f ′:TyBool, f1, f2) : t

{
J f1K if J f ′K = >
J f2K if J f ′K = ⊥

ExprRecord(n1= f1, n2= f2) : t (J f1K, J f2K)

ExprSelect( f ′:TyRecord(n1=t1, n2=t2), n)

{
f1 if n = n1

f2 if n = n2

where J f ′K = ( f1, f2)

ExprConstCase( f ′:TyAddConst(c, t), c, f1, f2)

{
J f1K if J f ′K = c
J f2K(J f ′K) otherwise

ExprInject(n, f ′) : TyUnion(n1=t1, n2=t2)

{
inl(J f ′K) if n = n1

inr(J f ′K) if n = n2

ExprSwitch( f ′:TyUnion(n1=t1, n2=t2),

n1= f1, n2= f2) : t

{
J f1K(g) if J f ′K = inl(g)
J f2K(g) if J f ′K = inr(g)



Appendix B

Full RAML definition

RAML expression e ERL translation LeM
int min plus(t) sig=TyAddConst(W, t)

lbl=TyAddConst(W, t)
ord=PoAddTop(PoIntLte)

tfm=fun (l s) -> ExprBinop(BoSemigroup(SgAddOmega(SgIntPlus)), l, s)

int range min plus(n, m) sig=TyAddConst(W, TyIntRange(n, m))

lbl=TyAddConst(W, TyIntRange(n, m))

ord=PoAddTop(PoIntLte)

tfm=fun (l s) -> ExprBinop(BoSemigroup(SgIntRangePlus), l, s)

168



A
PPEN

D
IX

B.
FU

LL
R

A
M

L
D

EFIN
ITIO

N
169

RAML expression e ERL translation LeM
int max min(t) sig=TyAddConst(W, t)

lbl=TyAddConst(W, t)
ord=PoAddTop(PoDual(PoIntLte))

tfm=fun (l s) -> ExprBinop(BoSemigroup(SgAddOmega(SgIntMin)), l, s)

paths(t) sig=TyAddConst(NOTSIMPLE, TyListSimp(t))
lbl=t
ord=PoAddTop(PoListLenLte)

tfm=fun (l s) -> ExprBinop(BoListCons, l, s)

add top(c, e′) sig=TyAddConst(c, Le′Msig)
lbl=TyAddConst(c, Le′Mlbl)
ord=PoAddTop(Le′Mord)
tfm=fun (l s) ->

ExprConstCase(l, c, c, fun (l2) ->

ExprConstCase(s, c, c, fun (s2) ->

ExprApply(Le′Mtfm, l2, s2)))

right(e′) sig=Le′Msig
lbl=TyUnit

ord=Le′Mord
tfm=fun (l s) -> s



170RAML expression e ERL translation LeM
left(e′) sig=Le′Msig

lbl=Le′Msig
ord=Le′Mord
tfm=fun (l s) -> l

lex product(n1=e1, n2=e2) sig=TyRecord(n1=Le1Msig, n2=Le2Msig)
lbl=TyRecord(n1=Le1Mlbl, n2=Le2Mlbl)
ord=PoRecordLex(n1=Le1Mord, n2=Le2Mord)
tfm=fun (l s) ->

ExprRecord(

n1=ExprApply(Le1Mtfm,
ExprSelect(l, n1), ExprSelect(s, n1)),

n2=ExprApply(Le2Mtfm,
ExprSelect(l, n2), ExprSelect(s, n2))

)

function union(n1=e1, n2=e2) sig=Le1Msig (requires Le1Msig = Le2Msig)
lbl=TyUnion(n1=Le1Mlbl, n2=Le2Mlbl)
ord=PoUnion(n1=Le1Mord, n2=Le2Mord)
tfm=fun (l s) ->

ExprSwitch(l,

n1 = fun (l1) -> ExprApply(Le1Mtfm, l1, s),

n2 = fun (l2) -> ExprApply(Le2Mtfm, l2, s)

)



Appendix C

Route map command syntaxes

area area-id;

as-path [ regular-expression-names ];

as-path-group [ as-path-group-names ];

color preference;

color2 preference;

community [ community-names ];

external type (1 | 2);

family family-name;

instance instance-name;

interface [ interface-names ];

level isis-level;

local-preference value;

metric metric-value;

metric2 metric-value;

metric3 metric-value;

metric4 metric-value;

neighbor [ ip-addresses ];

next-hop [ ip-addresses ];

origin (egp | igp | incomplete);

policy [ policy-names ];

preference preference;

preference2 preference;

protocol [ protocol-names ];

rib routing-table-name;

tag [ tag-numbers ];

tag2 tag-number;

Figure C.1: JunOS 10.1 policy match conditions.
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(accept | reject);

as-path-expand (as-number | last-as) <count number>;

as-path-prepend as-number;

class class-name;

color (preference | add number | subtract number);

color2 (preference | add number | subtract number);

community (add | delete | set | + | - | =) community-name;

cos-next-hop-map map-name;

damping list-name;

default-action (accept | reject);

destination-class class-name;

external type (1 | 2);

forwarding-class class-name;

install-nexthop <strict> (lsp [ lsp-names ] | lsp-regex [ regular-expressions ])

<except (lsp [ lsp-names ] | lsp-regex [ regular-expressions ])>;

load-balance per-packet;

local-preference (preference | add number | subtract number);

metric (metric-value | add number | | subtract number

| igp <metric-offset> | minimum-igp <metric-offset>

| expression {

metric (multiplier number | offset number | multiplier number offset number);

metric2 (multiplier number | offset number | multiplier number offset number);

}

metric2 (metric-value | add number | subtract number);

metric3 (metric-value | add number | subtract number);

metric4 (metric-value | add number | subtract number);

next (policy | term);

next-hop (ip-address | discard | next-table routing-table-name

| peer-address | reject | self);

origin (egp | igp | incomplete);

preference (preference | add number | subtract number);

preference2 (preference | add number | subtract number);

priority (high | low | medium);

source-class class-name;

tag (tag-number | add number | subtract number);

tag2 (tag-number | add number | subtract number);

trace;

Figure C.2: JunOS 10.1 policy terms.
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policy {

policy-statement @: txt {

term @: txt {

from {

as-path: txt;

as-path-list: txt;

community: txt;

community-list: txt;

neighbor: ipv4range;

origin: u32;

med: u32range;

localpref: u32range;

}

to {

as-path: txt;

as-path-list: txt;

community: txt;

neighbor: ipv4range;

origin: u32;

med: u32range;

localpref: u32range;

was-aggregated: bool;

}

then {

as-path-prepend: u32;

as-path-expand: u32;

community: txt;

community-add: txt;

community-del: txt;

origin: u32;

med: u32;

med-remove: bool;

localpref: u32;

aggregate-prefix-len: u32;

aggregate-brief-mode: bool;

}

}

}

}

Figure C.3: XORP BGP policy terms.
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